論文の概要: Enhanced Multi-Class Classification of Gastrointestinal Endoscopic Images with Interpretable Deep Learning Model
- arxiv url: http://arxiv.org/abs/2503.00780v1
- Date: Sun, 02 Mar 2025 08:07:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:24:20.265618
- Title: Enhanced Multi-Class Classification of Gastrointestinal Endoscopic Images with Interpretable Deep Learning Model
- Title(参考訳): 解釈型深層学習モデルを用いた消化管内視鏡画像のマルチクラス分類
- Authors: Astitva Kamble, Vani Bandodkar, Saakshi Dharmadhikary, Veena Anand, Pradyut Kumar Sanki, Mei X. Wu, Biswabandhu Jana,
- Abstract要約: 本研究は,Kvasirデータセットから8000個のラベル付き内視鏡画像を用いて分類精度を向上させる新しい手法を提案する。
提案したアーキテクチャは、適度なモデルの複雑さを保ちながら、データ拡張への依存をなくす。
テスト精度は94.25%、精度は94.29%、リコールは94.24%である。
- 参考スコア(独自算出の注目度): 0.7349657385817541
- License:
- Abstract: Endoscopy serves as an essential procedure for evaluating the gastrointestinal (GI) tract and plays a pivotal role in identifying GI-related disorders. Recent advancements in deep learning have demonstrated substantial progress in detecting abnormalities through intricate models and data augmentation methods.This research introduces a novel approach to enhance classification accuracy using 8,000 labeled endoscopic images from the Kvasir dataset, categorized into eight distinct classes. Leveraging EfficientNetB3 as the backbone, the proposed architecture eliminates reliance on data augmentation while preserving moderate model complexity. The model achieves a test accuracy of 94.25%, alongside precision and recall of 94.29% and 94.24% respectively. Furthermore, Local Interpretable Model-agnostic Explanation (LIME) saliency maps are employed to enhance interpretability by defining critical regions in the images that influenced model predictions. Overall, this work highlights the importance of AI in advancing medical imaging by combining high classification accuracy with interpretability.
- Abstract(参考訳): 内視鏡は消化管(GI)の評価に必須の手順であり、GI関連疾患の同定において重要な役割を担っている。
近年の深層学習の進歩により,複雑なモデルやデータ拡張手法による異常検出が著しく進展している。本研究では,Kvasirデータセットから8000個のラベル付き内視鏡画像を用いて,8つのクラスに分類して分類精度を高める手法を提案する。
EfficientNetB3をバックボーンとして利用することで、提案アーキテクチャは、適度なモデルの複雑さを保ちながら、データ拡張への依存を排除する。
テスト精度は94.25%、精度は94.29%、リコールは94.24%である。
さらに、モデル予測に影響を及ぼす画像の臨界領域を定義することにより、解釈可能性を高めるために、局所解釈可能なモデル非依存記述(LIME)サリエンシマップを用いる。
全体として、この研究は、高い分類精度と解釈可能性を組み合わせることで、医用画像の進歩におけるAIの重要性を強調している。
関連論文リスト
- Breast Tumor Classification Using EfficientNet Deep Learning Model [5.062500255359342]
我々は、集中的なデータ拡張パイプラインとコスト感受性学習を導入し、表現を改善し、モデルが多数派クラスを過度に好まないことを保証する。
以上の結果より,バイナリ分類性能が著しく向上し,良性症例に対する例外的リコールが向上した。
論文 参考訳(メタデータ) (2024-11-26T20:38:33Z) - Integrating Deep Feature Extraction and Hybrid ResNet-DenseNet Model for Multi-Class Abnormality Detection in Endoscopic Images [0.9374652839580183]
本研究の目的は、血管拡張症、出血、潰瘍を含む10種類のGI異常分類の同定を自動化することである。
提案したモデルは、よく構造化されたデータセットで全体の94%の精度を達成する。
論文 参考訳(メタデータ) (2024-10-24T06:10:31Z) - Controllable retinal image synthesis using conditional StyleGAN and latent space manipulation for improved diagnosis and grading of diabetic retinopathy [0.0]
本稿では,高忠実かつ多様なDRファウンダス画像を生成するためのフレームワークを提案する。
生成画像内のDR重大度と視覚的特徴を包括的に制御する。
我々は、条件付きで生成したDR画像をグレードで操作し、データセットの多様性をさらに向上する。
論文 参考訳(メタデータ) (2024-09-11T17:08:28Z) - SSL-CPCD: Self-supervised learning with composite pretext-class
discrimination for improved generalisability in endoscopic image analysis [3.1542695050861544]
深層学習に基づく教師付き手法は医用画像解析において広く普及している。
大量のトレーニングデータと、目に見えないデータセットに対する一般的な問題に直面する必要がある。
本稿では,加法的角マージンを用いたパッチレベルのインスタンスグループ識別とクラス間変動のペナル化について検討する。
論文 参考訳(メタデータ) (2023-05-31T21:28:08Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - A Multi-resolution Model for Histopathology Image Classification and
Localization with Multiple Instance Learning [9.36505887990307]
精度マップを利用して不審な地域を検知し,詳細なグレード予測を行うマルチレゾリューション・マルチインスタンス学習モデルを提案する。
このモデルは、830人の患者から20,229のスライドを含む大規模前立腺生検データセットに基づいて開発された。
このモデルは92.7%の精度、良性、低等級(中等級)、高等級(中等級)のCohen's Kappa、98.2%の受信機動作特性曲線(AUROC)、平均精度(AP)97.4%の予測を達成した。
論文 参考訳(メタデータ) (2020-11-05T06:42:39Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。