論文の概要: Integrating Deep Feature Extraction and Hybrid ResNet-DenseNet Model for Multi-Class Abnormality Detection in Endoscopic Images
- arxiv url: http://arxiv.org/abs/2410.18457v1
- Date: Thu, 24 Oct 2024 06:10:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:50:56.512621
- Title: Integrating Deep Feature Extraction and Hybrid ResNet-DenseNet Model for Multi-Class Abnormality Detection in Endoscopic Images
- Title(参考訳): 内視鏡画像における多クラス異常検出のための深部特徴抽出とハイブリッドResNet-DenseNetモデルの統合
- Authors: Aman Sagar, Preeti Mehta, Monika Shrivastva, Suchi Kumari,
- Abstract要約: 本研究の目的は、血管拡張症、出血、潰瘍を含む10種類のGI異常分類の同定を自動化することである。
提案したモデルは、よく構造化されたデータセットで全体の94%の精度を達成する。
- 参考スコア(独自算出の注目度): 0.9374652839580183
- License:
- Abstract: This paper presents a deep learning framework for the multi-class classification of gastrointestinal abnormalities in Video Capsule Endoscopy (VCE) frames. The aim is to automate the identification of ten GI abnormality classes, including angioectasia, bleeding, and ulcers, thereby reducing the diagnostic burden on gastroenterologists. Utilizing an ensemble of DenseNet and ResNet architectures, the proposed model achieves an overall accuracy of 94\% across a well-structured dataset. Precision scores range from 0.56 for erythema to 1.00 for worms, with recall rates peaking at 98% for normal findings. This study emphasizes the importance of robust data preprocessing techniques, including normalization and augmentation, in enhancing model performance. The contributions of this work lie in developing an effective AI-driven tool that streamlines the diagnostic process in gastroenterology, ultimately improving patient care and clinical outcomes.
- Abstract(参考訳): 本稿では,ビデオカプセル内視鏡(VCE)フレームにおける消化管異常のマルチクラス分類のためのディープラーニングフレームワークを提案する。
本研究の目的は, 血管拡張症, 出血, 潰瘍など10種類のGI異常の診断を自動化し, 消化器科医の診断負担を軽減することである。
DenseNetとResNetアーキテクチャのアンサンブルを利用して、提案したモデルは、よく構造化されたデータセット全体にわたって、全体的な精度94\%を達成する。
正確なスコアは、エロテマの0.56から、ワームの1.00までで、リコール率は正常な発見では98%である。
本研究は,モデルの性能向上において,正規化や拡張を含むロバストなデータ前処理技術の重要性を強調した。
この研究の貢献は、消化器科における診断プロセスを効率化し、最終的には患者のケアと臨床結果を改善する効果的なAI駆動ツールの開発にある。
関連論文リスト
- A Novel Ensemble-Based Deep Learning Model with Explainable AI for Accurate Kidney Disease Diagnosis [3.84521268332112]
慢性腎臓病 (CKD) は, 腎機能低下が特徴である。
本研究は,CKDの早期検出のための最先端移動学習モデルの適用について検討した。
論文 参考訳(メタデータ) (2024-12-12T17:18:49Z) - CAVE-Net: Classifying Abnormalities in Video Capsule Endoscopy [0.1937002985471497]
複雑な画像データセットを解析する際の診断精度を向上させるために,アンサンブルに基づくアプローチを提案する。
各モデルのユニークな特徴抽出機能を活用し、全体的な精度を向上させる。
これらの手法を用いることで、提案フレームワークであるCAVE-Netは、ロバストな特徴識別と、より優れた分類結果を提供する。
論文 参考訳(メタデータ) (2024-10-26T17:25:08Z) - CapsuleNet: A Deep Learning Model To Classify GI Diseases Using EfficientNet-b7 [1.2499537119440245]
Capsule Vision 2024 Challengeのために開発された深層学習モデルであるCapsuleNetについて述べる。
我々のモデルは、事前訓練されたEfficientNet-b7バックボーンを活用し、分類のための追加レイヤを調整し、PRELUアクティベーション関数で最適化する。
以上の結果から,CapsuleNetのようなCNNベースのモデルでは,特に推定時間が重要な因子である場合,GIトラクション病の分類に有効な解が得られることが示唆された。
論文 参考訳(メタデータ) (2024-10-24T20:43:47Z) - Classification of Endoscopy and Video Capsule Images using CNN-Transformer Model [1.0994755279455526]
本研究では、トランスフォーマーと畳み込みニューラルネットワーク(CNN)の利点を組み合わせて分類性能を向上させるハイブリッドモデルを提案する。
GastroVisionデータセットでは,精度,リコール,F1スコア,精度,マシューズ相関係数(MCC)が0.8320,0.8386,0.8324,0.8386,0.8191であった。
論文 参考訳(メタデータ) (2024-08-20T11:05:32Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
人工知能(AI)の最近の進歩は、医療画像と計算病理に革命をもたらしている。
デジタル全スライド画像(WSI)の解析における一定の課題は、何万ものタイルレベルの画像埋め込みをスライドレベルの表現に集約する問題である。
本研究は,9つの臨床的課題を対象とした10種類のスライドレベルのアグリゲーション手法のベンチマーク分析を行った。
論文 参考訳(メタデータ) (2024-07-10T17:00:57Z) - Deep learning in computed tomography pulmonary angiography imaging: a
dual-pronged approach for pulmonary embolism detection [0.0]
本研究の目的は,深層学習技術を活用し,肺塞栓症(PE)のコンピュータ支援診断(CAD)を強化することである。
我々の分類システムは、注意機構を用いて局所的な文脈を利用する注意誘導畳み込みニューラルネットワーク(AG-CNN)を含む。
AG-CNNはFUMPEデータセット上で堅牢なパフォーマンスを実現し、AUROCは0.927、感度は0.862、特異性は0.879、F1スコアは0.805、Inception-v3バックボーンアーキテクチャは0.805である。
論文 参考訳(メタデータ) (2023-11-09T08:23:44Z) - Neural Network-Based Histologic Remission Prediction In Ulcerative
Colitis [38.150634108667774]
潰瘍性大腸炎(UC)の新しい治療標的としての組織学的寛解
内視鏡(Endocytoscopy、EC)は、新しい超高倍率内視鏡技術である。
本稿では,心電図の組織学的疾患活動を評価するニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2023-08-28T15:54:14Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - HistoPerm: A Permutation-Based View Generation Approach for Improving
Histopathologic Feature Representation Learning [33.1098457952173]
HistoPermは共同埋め込みアーキテクチャを用いた表現学習のためのビュー生成手法である。
HistoPermは、全スライディングのヒストロジー画像から抽出したパッチの増分ビューを置換し、分類性能を向上させる。
以上の結果から,HistoPermは,精度,F1スコア,AUCの点で,パッチレベルとスライドレベルの分類性能を一貫して向上させることがわかった。
論文 参考訳(メタデータ) (2022-09-13T17:35:08Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
コンパクトな1次元自己組織化オペレーショナルニューラルネットワーク(Self-ONN)を用いた患者間心電図分類のための新しいアプローチを提案する。
我々は1D Self-ONN層を用いてECGデータから形態表現を自動的に学習し、Rピーク付近のECG波形の形状を捉えることができた。
提案手法は,MIT-BIH ベンチマークデータベースを用いて,これまでで最高の分類性能を達成している。
論文 参考訳(メタデータ) (2022-04-07T22:49:18Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
本稿では,網膜血管,動脈,静脈を同時に分割する空間活性化機構を備えたマルチタスクディープニューラルネットワークを提案する。
提案するネットワークは,容器分割における画素ワイド精度95.70%,A/V分類精度94.50%を実現している。
論文 参考訳(メタデータ) (2020-07-18T05:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。