論文の概要: Breast Tumor Classification Using EfficientNet Deep Learning Model
- arxiv url: http://arxiv.org/abs/2411.17870v1
- Date: Tue, 26 Nov 2024 20:38:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:25:37.942096
- Title: Breast Tumor Classification Using EfficientNet Deep Learning Model
- Title(参考訳): ネットワーク深層学習モデルを用いた乳腺腫瘍の分類
- Authors: Majid Behzadpour, Bengie L. Ortiz, Ebrahim Azizi, Kai Wu,
- Abstract要約: 我々は、集中的なデータ拡張パイプラインとコスト感受性学習を導入し、表現を改善し、モデルが多数派クラスを過度に好まないことを保証する。
以上の結果より,バイナリ分類性能が著しく向上し,良性症例に対する例外的リコールが向上した。
- 参考スコア(独自算出の注目度): 5.062500255359342
- License:
- Abstract: Precise breast cancer classification on histopathological images has the potential to greatly improve the diagnosis and patient outcome in oncology. The data imbalance problem largely stems from the inherent imbalance within medical image datasets, where certain tumor subtypes may appear much less frequently. This constitutes a considerable limitation in biased model predictions that can overlook critical but rare classes. In this work, we adopted EfficientNet, a state-of-the-art convolutional neural network (CNN) model that balances high accuracy with computational cost efficiency. To address data imbalance, we introduce an intensive data augmentation pipeline and cost-sensitive learning, improving representation and ensuring that the model does not overly favor majority classes. This approach provides the ability to learn effectively from rare tumor types, improving its robustness. Additionally, we fine-tuned the model using transfer learning, where weights in the beginning trained on a binary classification task were adopted to multi-class classification, improving the capability to detect complex patterns within the BreakHis dataset. Our results underscore significant improvements in the binary classification performance, achieving an exceptional recall increase for benign cases from 0.92 to 0.95, alongside an accuracy enhancement from 97.35 % to 98.23%. Our approach improved the performance of multi-class tasks from 91.27% with regular augmentation to 94.54% with intensive augmentation, reaching 95.04% with transfer learning. This framework demonstrated substantial gains in precision in the minority classes, such as Mucinous carcinoma and Papillary carcinoma, while maintaining high recall consistently across these critical subtypes, as further confirmed by confusion matrix analysis.
- Abstract(参考訳): 病理組織像による乳がんの正確な分類は,腫瘍学における診断と患者の予後を大幅に改善する可能性がある。
データ不均衡問題は、特定の腫瘍のサブタイプがより頻度の低いように見える医療画像データセット内の固有の不均衡に起因する。
これは、批判的だが稀なクラスを見渡すことができるバイアス付きモデル予測において、かなりの制限を構成する。
本研究では,最先端の畳み込みニューラルネットワーク(CNN)モデルであるEfficientNetを採用した。
データ不均衡に対処するために、集中的なデータ拡張パイプラインとコスト感受性学習を導入し、表現を改善し、モデルが多数派クラスを過度に好まないことを保証する。
このアプローチは、まれな腫瘍タイプから効果的に学習する能力を提供し、その堅牢性を向上させる。
さらに、転送学習を用いてモデルを微調整し、二分分類タスクで訓練された初期重みを多クラス分類に適用し、BreakHisデータセット内の複雑なパターンを検出する能力を改善した。
その結果, 良性症例は0.92から0.95に, 精度は97.35%から98.23%に向上した。
提案手法では, 正規増分で91.27%, 集中増分で94.54%, 転帰学習で95.04%に向上した。
この枠組みは, 粘液癌や乳頭癌などのマイノリティークラスにおいて, 高いリコール率を維持しつつ, これらの臨界サブタイプ間で高い精度を保ちながら, 混乱行列解析によりさらに確認された。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Comparative Analysis of Transfer Learning Models for Breast Cancer Classification [10.677937909900486]
本研究は, 病理組織学的スライドにおいて, 浸潤性直腸癌 (IDC) と非IDCを区別する深層学習モデルの効率について検討した。
ResNet-50, DenseNet-121, ResNeXt-50, Vision Transformer (ViT), GoogLeNet (Inception v3), EfficientNet, MobileNet, SqueezeNet。
論文 参考訳(メタデータ) (2024-08-29T18:49:32Z) - Leveraging Knowledge Distillation for Lightweight Skin Cancer Classification: Balancing Accuracy and Computational Efficiency [0.0]
皮膚がんは公衆衛生にとって大きな関心事であり、報告されているがんの3分の1を占めている。
本稿では,軽量ながら高い性能の分類器を作成するための知識蒸留に基づく手法を提案する。
高精度でコンパクトなサイズを持つため、われわれのモデルは、特に資源制約のある環境では、正確な皮膚がん分類の候補となる可能性がある。
論文 参考訳(メタデータ) (2024-06-24T18:13:09Z) - A Comprehensive Evaluation of Histopathology Foundation Models for Ovarian Cancer Subtype Classification [1.9499122087408571]
病理組織学の基礎モデルは、多くのタスクにまたがる大きな約束を示している。
これまでで最も厳格な単一タスクによる病理組織学的基盤モデルの検証を報告した。
病理組織学的基盤モデルは卵巣がんの亜型化に明確な利益をもたらす。
論文 参考訳(メタデータ) (2024-05-16T11:21:02Z) - Optimizing Brain Tumor Classification: A Comprehensive Study on Transfer
Learning and Imbalance Handling in Deep Learning Models [0.0]
MRIデータを用いた脳腫瘍分類のための新しい深層学習手法であるTransfer Learning-CNNを提案する。
公開のBrain MRIデータセットを活用することで、実験はさまざまな腫瘍タイプを分類するための様々な転写学習モデルを評価した。
VGG-16とCNNを組み合わせた提案手法は,96%の精度で,代替手法をはるかに上回った。
論文 参考訳(メタデータ) (2023-08-13T17:30:32Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。