Scalable Memory Recycling for Large Quantum Programs
- URL: http://arxiv.org/abs/2503.00822v1
- Date: Sun, 02 Mar 2025 09:56:39 GMT
- Title: Scalable Memory Recycling for Large Quantum Programs
- Authors: Israel Reichental, Ravid Alon, Lior Preminger, Matan Vax, Amir Naveh,
- Abstract summary: As quantum computing technology advances, the complexity of quantum algorithms increases, necessitating a shift from low-level circuit descriptions to high-level programming paradigms.<n>This paper addresses the challenges of developing a compilation that optimize memory management and scales well for bigger, more complex circuits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As quantum computing technology advances, the complexity of quantum algorithms increases, necessitating a shift from low-level circuit descriptions to high-level programming paradigms. This paper addresses the challenges of developing a compilation algorithm that optimizes memory management and scales well for bigger, more complex circuits. Our approach models the high-level quantum code as a control flow graph and presents a workflow that searches for a topological sort that maximizes opportunities for qubit reuse. Various heuristics for qubit reuse strategies handle the trade-off between circuit width and depth. We also explore scalability issues in large circuits, suggesting methods to mitigate compilation bottlenecks. By analyzing the structure of the circuit, we are able to identify sub-problems that can be solved separately, without a significant effect on circuit quality, while reducing runtime significantly. This method lays the groundwork for future advancements in quantum programming and compiler optimization by incorporating scalability into quantum memory management.
Related papers
- Circuit Folding: Modular and Qubit-Level Workload Management in Quantum-Classical Systems [5.6744988702710835]
Circuit knitting is a technique that offloads some of the computational burden from quantum circuits.<n>We propose CiFold, a novel graph-based system that identifies and leverages repeated structures within quantum circuits.<n>Our system has been extensively evaluated across various quantum algorithms, achieving up to 799.2% reduction in quantum resource usage.
arXiv Detail & Related papers (2024-12-24T23:34:17Z) - AI-Powered Algorithm-Centric Quantum Processor Topology Design [10.53761034955718]
We introduce a novel approach to dynamically tailor qubit topologies to the unique specifications of individual quantum circuits.<n>Our method marks a significant departure from previous methods that have been constrained to mapping circuits onto a fixed processor topology.
arXiv Detail & Related papers (2024-12-18T12:53:16Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Quantum Dynamic Programming [0.0]
We show how to coherently generate step unitaries by using memorized intermediate quantum states.<n> Quantum dynamic programming achieves an exponential reduction in circuit depth for a broad class of fixed-point quantum recursions.<n>We showcase applications of quantum dynamic programming to several quantum recursions, including a variant of Grover's search, quantum imaginary-time evolution, and a new protocol for obliviously preparing a quantum state in its Schmidt basis.
arXiv Detail & Related papers (2024-03-14T08:59:22Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.