論文の概要: Parameter-Adaptive Dynamic Pricing
- arxiv url: http://arxiv.org/abs/2503.00929v1
- Date: Sun, 02 Mar 2025 15:12:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:51.800184
- Title: Parameter-Adaptive Dynamic Pricing
- Title(参考訳): パラメータ適応型動的価格設定
- Authors: Xueping Gong, Jiheng Zhang,
- Abstract要約: 既存の手法では、しばしば要求関数の正確な知識(例えば、H"older smoothness level)とリプシッツ定数(Lipschitz constant)を必要とする。
本稿では,これらの課題に事前のパラメータ知識を使わずに対処するための適応的アプローチを提案する。
我々は、後悔を効率的に管理し、柔軟性と実用性を向上するアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 4.156757591117864
- License:
- Abstract: Dynamic pricing is crucial in sectors like e-commerce and transportation, balancing exploration of demand patterns and exploitation of pricing strategies. Existing methods often require precise knowledge of the demand function, e.g., the H{\"o}lder smoothness level and Lipschitz constant, limiting practical utility. This paper introduces an adaptive approach to address these challenges without prior parameter knowledge. By partitioning the demand function's domain and employing a linear bandit structure, we develop an algorithm that manages regret efficiently, enhancing flexibility and practicality. Our Parameter-Adaptive Dynamic Pricing (PADP) algorithm outperforms existing methods, offering improved regret bounds and extensions for contextual information. Numerical experiments validate our approach, demonstrating its superiority in handling unknown demand parameters.
- Abstract(参考訳): ダイナミックな価格設定は、eコマースや交通機関、需要パターンの探索と価格戦略の活用のバランスをとる上で重要である。
既存の手法では、需要関数の正確な知識、例えば H{\"o}lder の滑らか度レベルとリプシッツ定数が要求され、実用性は制限される。
本稿では,これらの課題に事前のパラメータ知識を使わずに対処するための適応的アプローチを提案する。
本研究では,要求関数の領域を分割し,線形バンディット構造を用いることで,後悔を効率的に管理し,柔軟性と実用性を向上するアルゴリズムを開発した。
我々のパラメータ適応動的価格法(PADP)アルゴリズムは既存の手法よりも優れており、改善された後悔境界と文脈情報の拡張を提供する。
数値解析実験により,未知の需要パラメータの処理において,その優位性を実証した。
関連論文リスト
- Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル幻覚を緩和するための強力なアプローチとして登場した。
既存のRAGフレームワークは、しばしば無差別に検索を適用し、非効率な再検索につながる。
本稿では,精度・コストのトレードオフを動的に調整できる新しいユーザ制御可能なRAGフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:56:20Z) - Transfer Learning for Nonparametric Contextual Dynamic Pricing [17.420508136662257]
動的価格戦略は、市場条件や顧客特性に基づいて価格を調整することで、企業が収益を最大化する上で不可欠である。
この制限を克服するための有望なアプローチの1つは、関連する製品や市場からの情報を活用して、焦点となる価格決定を知らせることである。
本稿では,ソースドメインからの事前収集データを効果的に活用し,対象ドメインの価格決定を効率化する,新しいTLDPアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-31T01:05:04Z) - Step-by-Step Unmasking for Parameter-Efficient Fine-tuning of Large Language Models [18.877891285367216]
パラメータ効率細調整(PEFT)のクラスは、モデルのパラメータのごく一部だけを選択的に微調整することで、計算上の課題を軽減することを目的としている。
我々はパラメータの重要度を連続的に計算し,パラメータを動的にアンマスクする新しいPEFT法である$textID3$を紹介した。
解析的に、$textID3$は勾配更新数を2倍に減らし、計算効率が向上することを示した。
論文 参考訳(メタデータ) (2024-08-26T17:58:53Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Utility Fairness in Contextual Dynamic Pricing with Demand Learning [23.26236046836737]
本稿では,ユーティリティフェアネス制約下でのパーソナライズされた価格設定のための新しいコンテキスト帯域幅アルゴリズムを提案する。
動的価格設定と需要学習を取り入れた当社のアプローチは,価格戦略における公正性の重要課題に対処する。
論文 参考訳(メタデータ) (2023-11-28T05:19:23Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
制約付きオンライン学習問題に対する既存の原始双対アルゴリズムは、2つの基本的な仮定に依存している。
このような仮定は、標準の原始双対テンプレートを弱適応的後悔最小化器で与えることによって、どのように回避できるのかを示す。
上記の2つの前提が満たされていない場合に保証される、世界の最高の保証を証明します。
論文 参考訳(メタデータ) (2023-02-02T16:30:33Z) - On Parametric Optimal Execution and Machine Learning Surrogates [3.077531983369872]
本研究では,短時間の価格変動とレジリエンスを考慮した離散時間における最適順序実行問題について検討する。
動的プログラミングとディープラーニングに基づく数値アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-04-18T22:40:14Z) - Towards Hyperparameter-free Policy Selection for Offline Reinforcement
Learning [10.457660611114457]
オフライン強化学習において、異なるトレーニングアルゴリズムによって生成される価値関数とポリシーの選択方法を示す。
我々は,近年の値関数選択の理論的進歩であるBVFT[XJ21]を用いて,Atariなどの離散作用ベンチマークにおいて,その有効性を示す。
論文 参考訳(メタデータ) (2021-10-26T20:12:11Z) - Automating Control of Overestimation Bias for Continuous Reinforcement
Learning [65.63607016094305]
バイアス補正を導くためのデータ駆動型手法を提案する。
我々は、最先端の連続制御アルゴリズムであるTrncated Quantile Criticsにおいて、その効果を実証する。
論文 参考訳(メタデータ) (2021-10-26T09:27:12Z) - Amortized Auto-Tuning: Cost-Efficient Transfer Optimization for
Hyperparameter Recommendation [83.85021205445662]
本稿では,機械学習モデルのチューニングを高速化する自動チューニング(AT2)を提案する。
マルチタスクマルチ忠実ベイズ最適化フレームワークの徹底的な解析を行い、最適なインスタンス化-アモータイズ自動チューニング(AT2)を実現する。
論文 参考訳(メタデータ) (2021-06-17T00:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。