論文の概要: Variance reduction in output from generative AI
- arxiv url: http://arxiv.org/abs/2503.01033v1
- Date: Sun, 02 Mar 2025 21:34:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:26:17.318866
- Title: Variance reduction in output from generative AI
- Title(参考訳): 生成AIからの出力の可変化
- Authors: Yu Xie, Yueqi Xie,
- Abstract要約: 我々は、生成型AIモデルが本質的に「平均への回帰」現象を起こしやすいことを実証した。
本研究は, この現象の社会的意味を, 社会的・集団的・個人的・2次元的・物質的・非物質的な3段階にわたって論じる。
- 参考スコア(独自算出の注目度): 11.248899695350323
- License:
- Abstract: Generative AI models, such as ChatGPT, will increasingly replace humans in producing output for a variety of important tasks. While much prior work has mostly focused on the improvement in the average performance of generative AI models relative to humans' performance, much less attention has been paid to the significant reduction of variance in output produced by generative AI models. In this Perspective, we demonstrate that generative AI models are inherently prone to the phenomenon of "regression toward the mean" whereby variance in output tends to shrink relative to that in real-world distributions. We discuss potential social implications of this phenomenon across three levels-societal, group, and individual-and two dimensions-material and non-material. Finally, we discuss interventions to mitigate negative effects, considering the roles of both service providers and users. Overall, this Perspective aims to raise awareness of the importance of output variance in generative AI and to foster collaborative efforts to meet the challenges posed by the reduction of variance in output generated by AI models.
- Abstract(参考訳): ChatGPTのような生成AIモデルは、さまざまな重要なタスクのアウトプットを人間に置き換える傾向にある。
多くの先行研究は、人のパフォーマンスに対する生成AIモデルの平均性能の改善に主に焦点を合わせてきたが、生成AIモデルによって生成された出力のばらつきの顕著な低減には、はるかに注意が払われていない。
このパースペクティブでは、生成型AIモデルは「平均への回帰」という現象に本質的に起因し、実世界の分布と比較すると出力のばらつきは縮小する傾向にあることを示した。
本研究は, この現象の社会的意味を, 社会的・集団的・個人的・2次元的・物質的・非物質的な3段階にわたって論じる。
最後に、サービスプロバイダとユーザの両方の役割を考慮して、ネガティブな影響を軽減するための介入について議論する。
全体として、この視点は、生成AIにおける出力分散の重要性の認識を高め、AIモデルが生成する出力のばらつきの低減に起因する課題を満たすための協力的な取り組みを促進することを目的としている。
関連論文リスト
- "I Am the One and Only, Your Cyber BFF": Understanding the Impact of GenAI Requires Understanding the Impact of Anthropomorphic AI [55.99010491370177]
我々は、人為的AIの社会的影響をマッピングしない限り、生成AIの社会的影響を徹底的にマッピングすることはできないと論じる。
人為的AIシステムは、人間のように知覚されるアウトプットを生成する傾向が強まっている。
論文 参考訳(メタデータ) (2024-10-11T04:57:41Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
AIパラダイムは、科学的に脆弱なだけでなく、望ましくない結果をもたらすものだ、と私たちは主張する。
第一に、効率の改善にもかかわらず、その計算要求はモデルの性能よりも速く増加するため、持続可能ではない。
第二に、健康、教育、気候などの重要な応用は別として、他人を犠牲にして特定の問題に焦点をあてることである。
論文 参考訳(メタデータ) (2024-09-21T14:43:54Z) - Measuring Human Contribution in AI-Assisted Content Generation [66.06040950325969]
本研究は,AIによるコンテンツ生成における人間の貢献度を測定する研究課題を提起する。
人間の入力とAI支援出力の自己情報に対する相互情報を計算することにより、コンテンツ生成における人間の比例情報貢献を定量化する。
論文 参考訳(メタデータ) (2024-08-27T05:56:04Z) - When AI Eats Itself: On the Caveats of AI Autophagy [18.641925577551557]
AIオートファジー現象は、生成的AIシステムが認識せずに自分たちのアウトプットを消費する未来を示唆している。
本研究では、既存の文献を調査し、AIオートファジーの結果を掘り下げ、関連するリスクを分析し、その影響を軽減するための戦略を探求する。
論文 参考訳(メタデータ) (2024-05-15T13:50:23Z) - MONAL: Model Autophagy Analysis for Modeling Human-AI Interactions [11.972017738888825]
大規模モデルの自己消費説明のためのモデルオートファジー分析(MONAL)を提案する。
MONALは、人間とAIシステム間の交換における人為的な情報の抑制を解明するために、2つの異なる自己食ループを使用している。
生成したモデルのキャパシティを,情報作成者とディスセミネータの両方として評価する。
論文 参考訳(メタデータ) (2024-02-17T13:02:54Z) - FIMBA: Evaluating the Robustness of AI in Genomics via Feature
Importance Adversarial Attacks [0.0]
本稿では、認識された公開ゲノムデータセット上の下流タスクを利用するAIモデルの脆弱性を実証する。
我々は、実際のデータを模倣し、モデルの意思決定を混乱させながら、入力変換に焦点を当てた攻撃を展開することによって、モデルの堅牢性を損なう。
実験の結果, 精度が低下し, 偽陽性や偽陰性が増加し, モデル性能が低下していることが明らかとなった。
論文 参考訳(メタデータ) (2024-01-19T12:04:31Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Predictability and Surprise in Large Generative Models [8.055204456718576]
大規模プレトレーニングは、有能で汎用的な生成モデルを作成するための技術として登場した。
本稿では,そのようなモデルの直観的特性を強調し,この特性の政策的含意について論じる。
論文 参考訳(メタデータ) (2022-02-15T23:21:23Z) - Human Parity on CommonsenseQA: Augmenting Self-Attention with External
Attention [66.93307963324834]
本稿では,外部の知識や状況に配慮した外部アテンション機構を備えたトランスフォーマーアーキテクチャの強化を提案する。
提案した外部注意機構は,既存のAIシステムの性能を大幅に向上させることができる。
提案システムは、オープンなCommonsenseQA研究ベンチマークにおいて、89.4%の精度で人間に匹敵する88.9%の精度で人間に匹敵する。
論文 参考訳(メタデータ) (2021-12-06T18:59:02Z) - Variational Auto-Encoder Architectures that Excel at Causal Inference [26.731576721694648]
観測データから因果効果を推定することは、多くの種類の決定を下す上で重要である。
この課題に対処する1つのアプローチは、データの基礎となる要素の分解された表現を学習することである。
本稿では,変分オートエンコーダの最近の進歩を基盤とした生成的アプローチを提案する。
論文 参考訳(メタデータ) (2021-11-11T22:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。