Vector Copula Variational Inference and Dependent Block Posterior Approximations
- URL: http://arxiv.org/abs/2503.01072v1
- Date: Mon, 03 Mar 2025 00:24:54 GMT
- Title: Vector Copula Variational Inference and Dependent Block Posterior Approximations
- Authors: Yu Fu, Michael Stanley Smith, Anastasios Panagiotelis,
- Abstract summary: This paper proposes using vector copulas to capture dependence between the blocks parsimoniously.<n>We call the resulting joint distribution a dependent block posterior'' approximation.<n>The efficacy and versatility of the approach is demonstrated using four different statistical models and 16 datasets.
- Score: 3.4402084898030454
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Variational inference (VI) is a popular method to estimate statistical and econometric models. The key to VI is the selection of a tractable density to approximate the Bayesian posterior. For large and complex models a common choice is to assume independence between multivariate blocks in a partition of the parameter space. While this simplifies the problem it can reduce accuracy. This paper proposes using vector copulas to capture dependence between the blocks parsimoniously. Tailored multivariate marginals are constructed using learnable cyclically monotone transformations. We call the resulting joint distribution a ``dependent block posterior'' approximation. Vector copula models are suggested that make tractable and flexible variational approximations. They allow for differing marginals, numbers of blocks, block sizes and forms of between block dependence. They also allow for solution of the variational optimization using fast and efficient stochastic gradient methods. The efficacy and versatility of the approach is demonstrated using four different statistical models and 16 datasets which have posteriors that are challenging to approximate. In all cases, our method produces more accurate posterior approximations than benchmark VI methods that either assume block independence or factor-based dependence, at limited additional computational cost.
Related papers
- Kernel Trace Distance: Quantum Statistical Metric between Measures through RKHS Density Operators [11.899035547580201]
We introduce a novel distance between measures that compares them through a Schatten norm of their kernel covariance operators.<n>We show that this new distance is an integral probability metric that can be framed between a Maximum Mean Discrepancy (MMD) and a Wasserstein distance.
arXiv Detail & Related papers (2025-07-08T14:56:44Z) - EigenVI: score-based variational inference with orthogonal function expansions [23.696028065251497]
EigenVI is an eigenvalue-based approach for black-box variational inference (BBVI)
We use EigenVI to approximate a variety of target distributions, including a benchmark suite of Bayesian models from posteriordb.
arXiv Detail & Related papers (2024-10-31T15:48:34Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - PAVI: Plate-Amortized Variational Inference [55.975832957404556]
Inference is challenging for large population studies where millions of measurements are performed over a cohort of hundreds of subjects.
This large cardinality renders off-the-shelf Variational Inference (VI) computationally impractical.
In this work, we design structured VI families that efficiently tackle large population studies.
arXiv Detail & Related papers (2023-08-30T13:22:20Z) - Bayesian Pseudo-Coresets via Contrastive Divergence [5.479797073162603]
We introduce a novel approach for constructing pseudo-coresets by utilizing contrastive divergence.
It eliminates the need for approximations in the pseudo-coreset construction process.
We conduct extensive experiments on multiple datasets, demonstrating its superiority over existing BPC techniques.
arXiv Detail & Related papers (2023-03-20T17:13:50Z) - VI-DGP: A variational inference method with deep generative prior for
solving high-dimensional inverse problems [0.7734726150561089]
We propose a novel approximation method for estimating the high-dimensional posterior distribution.
This approach leverages a deep generative model to learn a prior model capable of generating spatially-varying parameters.
The proposed method can be fully implemented in an automatic differentiation manner.
arXiv Detail & Related papers (2023-02-22T06:48:10Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
We propose an optimization algorithm for Variational Inference (VI) in complex models.
We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix.
Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models.
arXiv Detail & Related papers (2022-10-26T10:12:31Z) - Unified Multivariate Gaussian Mixture for Efficient Neural Image
Compression [151.3826781154146]
latent variables with priors and hyperpriors is an essential problem in variational image compression.
We find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective.
Our model has better rate-distortion performance and an impressive $3.18times$ compression speed up.
arXiv Detail & Related papers (2022-03-21T11:44:17Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Efficient semidefinite bounds for multi-label discrete graphical models [6.226454551201676]
One of the main queries on such models is to identify the SDPWCSP Function on Cost of a Posteri (MAP) Networks.
We consider a traditional dualized constraint approach and a dedicated dedicated SDP/Monteiro style method based on row-by-row updates.
arXiv Detail & Related papers (2021-11-24T13:38:34Z) - On the Use of Minimum Penalties in Statistical Learning [2.1320960069210475]
We propose a framework to simultaneously estimate regression coefficients associated with a multivariate regression model and relationships between outcome variables.
An iterative algorithm that generalizes current state art methods is proposed as a solution.
We extend the proposed MinPen framework to other exponential family loss functions, with a specific focus on multiple binomial responses.
arXiv Detail & Related papers (2021-06-09T16:15:46Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Causality-based Counterfactual Explanation for Classification Models [11.108866104714627]
We propose a prototype-based counterfactual explanation framework (ProCE)
ProCE is capable of preserving the causal relationship underlying the features of the counterfactual data.
In addition, we design a novel gradient-free optimization based on the multi-objective genetic algorithm that generates the counterfactual explanations.
arXiv Detail & Related papers (2021-05-03T09:25:59Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.