論文の概要: Depth-Adaptive Graph Neural Networks via Learnable Bakry-'Emery Curvature
- arxiv url: http://arxiv.org/abs/2503.01079v1
- Date: Mon, 03 Mar 2025 00:48:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:23:02.889909
- Title: Depth-Adaptive Graph Neural Networks via Learnable Bakry-'Emery Curvature
- Title(参考訳): 学習可能なBakry'Emery曲率による深さ適応型グラフニューラルネットワーク
- Authors: Asela Hevapathige, Ahad N. Zehmakan, Qing Wang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフベースのタスクに対して強力な表現学習能力を示す。
GNNの最近の進歩は、曲率などの幾何学的性質を活用して表現能力を向上している。
本稿では,情報伝達における構造的側面とタスク駆動的側面の両方を捉えたBakry-'Emery曲率の統合を提案する。
- 参考スコア(独自算出の注目度): 7.2716257100195385
- License:
- Abstract: Graph Neural Networks (GNNs) have demonstrated strong representation learning capabilities for graph-based tasks. Recent advances on GNNs leverage geometric properties, such as curvature, to enhance its representation capabilities by modeling complex connectivity patterns and information flow within graphs. However, most existing approaches focus solely on discrete graph topology, overlooking diffusion dynamics and task-specific dependencies essential for effective learning. To address this, we propose integrating Bakry-\'Emery curvature, which captures both structural and task-driven aspects of information propagation. We develop an efficient, learnable approximation strategy, making curvature computation scalable for large graphs. Furthermore, we introduce an adaptive depth mechanism that dynamically adjusts message-passing layers per vertex based on its curvature, ensuring efficient propagation. Our theoretical analysis establishes a link between curvature and feature distinctiveness, showing that high-curvature vertices require fewer layers, while low-curvature ones benefit from deeper propagation. Extensive experiments on benchmark datasets validate the effectiveness of our approach, showing consistent performance improvements across diverse graph learning tasks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフベースのタスクに対して強力な表現学習能力を示す。
GNNの最近の進歩は、曲率などの幾何学的性質を活用し、複雑な接続パターンやグラフ内の情報フローをモデル化することによって、表現能力を向上している。
しかし、既存のほとんどのアプローチは、拡散力学と効果的な学習に不可欠なタスク固有の依存関係を見越して、離散グラフトポロジーにのみ焦点をあてている。
そこで我々は,情報伝達における構造的側面とタスク駆動的側面の両方を捉えたBakry-\Emery曲率の統合を提案する。
我々は,大規模グラフに対する曲率計算をスケーラブルにするため,効率よく学習可能な近似戦略を開発する。
さらに,その曲率に基づいてメッセージパッシング層を動的に調整し,効率的な伝搬を実現する適応深度機構を導入する。
我々の理論的解析は、曲率と特徴特性の関連性を確立し、高い曲率の頂点はより少ない層を必要とする一方で、低い曲率の頂点はより深い伝播の恩恵を受けることを示す。
ベンチマークデータセットの大規模な実験は、我々のアプローチの有効性を検証し、多様なグラフ学習タスク間で一貫したパフォーマンス改善を示す。
関連論文リスト
- Discrete Curvature Graph Information Bottleneck [15.867882286328774]
本稿では,情報伝達構造を最適化する新しい離散曲率グラフ情報ボトルネック(CurvGIB)フレームワークを提案する。
CurvGIBは、リッチ曲率最適化のための変分情報ボトルネック(VIB)の原理を進化させ、最適な情報伝達パターンを学習する。
様々なデータセットの実験は、CurvGIBの優れた有効性と解釈可能性を示している。
論文 参考訳(メタデータ) (2024-12-28T03:33:55Z) - TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
本稿では,Top-mアテンション機構アグリゲーションコンポーネントと近傍アグリゲーションコンポーネントを統合した,革新的なグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
提案手法の有効性を評価するため,提案手法をGNN分野において未探索の新たな課題である引用感情予測に適用した。
論文 参考訳(メタデータ) (2024-11-23T05:31:25Z) - Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks(DGN)は、構造化情報の処理と学習が可能なディープラーニングモデルのファミリとして登場した。
この論文は、静的グラフと動的グラフのためのDGNの内部の情報伝達のダイナミクスを考察し、動的システムとしての設計に焦点をあてる。
論文 参考訳(メタデータ) (2024-10-14T12:55:51Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
不均一グラフニューラルネットワークは,グラフ表現学習において大きな可能性を秘めている。
我々は,PC-HGNという異種グラフ学習ネットワークのための関係中心のPooling and Convolutionを設計し,関係固有サンプリングと相互関係の畳み込みを実現する。
実世界の3つのデータセットにおける最先端グラフ学習モデルとの比較により,提案モデルの性能評価を行った。
論文 参考訳(メタデータ) (2022-10-31T08:43:32Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Dynamic Graph Representation Learning via Graph Transformer Networks [41.570839291138114]
動的グラフ変換器 (DGT) を用いた動的グラフ学習手法を提案する。
DGTは、グラフトポロジを効果的に学習し、暗黙のリンクをキャプチャするための時空間符号化を持つ。
DGTはいくつかの最先端のベースラインと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-19T21:44:23Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。