論文の概要: Large AI Model for Delay-Doppler Domain Channel Prediction in 6G OTFS-Based Vehicular Networks
- arxiv url: http://arxiv.org/abs/2503.01116v1
- Date: Mon, 03 Mar 2025 02:51:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:14:21.337034
- Title: Large AI Model for Delay-Doppler Domain Channel Prediction in 6G OTFS-Based Vehicular Networks
- Title(参考訳): 6G OTFS ネットワークにおける遅延ドップラー領域チャネル予測のための大規模AIモデル
- Authors: Jianzhe Xue, Dongcheng Yuan, Zhanxi Ma, Tiankai Jiang, Yu Sun, Haibo Zhou, Xuemin Shen,
- Abstract要約: 高速車載ネットワークに適した遅延ドップラー(DD)ドメインチャネル予測フレームワークを提案する。
チャネル表現をDDドメインに変換することで、基礎となる物理伝播過程と密に一致した直感的でスパースで安定した描写が得られる。
我々は大規模な人工知能(AI)モデルを利用してこれらのDDドメインの時系列パラメータを予測し、時間相関をモデル化する高度な能力を活用している。
- 参考スコア(独自算出の注目度): 32.12554262450808
- License:
- Abstract: Channel prediction is crucial for high-mobility vehicular networks, as it enables the anticipation of future channel conditions and the proactive adjustment of communication strategies. However, achieving accurate vehicular channel prediction is challenging due to significant Doppler effects and rapid channel variations resulting from high-speed vehicle movement and complex propagation environments. In this paper, we propose a novel delay-Doppler (DD) domain channel prediction framework tailored for high-mobility vehicular networks. By transforming the channel representation into the DD domain, we obtain an intuitive, sparse, and stable depiction that closely aligns with the underlying physical propagation processes, effectively reducing the complex vehicular channel to a set of time-series parameters with enhanced predictability. Furthermore, we leverage the large artificial intelligence (AI) model to predict these DD-domain time-series parameters, capitalizing on their advanced ability to model temporal correlations. The zero-shot capability of the pre-trained large AI model facilitates accurate channel predictions without requiring task-specific training, while subsequent fine-tuning on specific vehicular channel data further improves prediction accuracy. Extensive simulation results demonstrate the effectiveness of our DD-domain channel prediction framework and the superior accuracy of the large AI model in predicting time-series channel parameters, thereby highlighting the potential of our approach for robust vehicular communication systems.
- Abstract(参考訳): チャネル予測は、将来のチャネル条件の予測と通信戦略の積極的な調整を可能にするため、高移動性車両ネットワークにとって不可欠である。
しかし,高速車両移動と複雑な伝搬環境によるドップラー効果と急激な流路変動により,正確な車体流路予測は困難である。
本稿では,高速車載ネットワークに適した新しい遅延ドップラー(DD)ドメインチャネル予測フレームワークを提案する。
チャネル表現をDD領域に変換することで、基礎となる物理伝播過程と密に整合し、予測可能性を高めた一連の時系列パラメータに対して、複雑な車両のチャネルを効果的に減少させる、直感的でスパースで安定した描写が得られる。
さらに、これらのDDドメインの時系列パラメータを予測するために、大規模な人工知能(AI)モデルを活用し、時間相関をモデル化する高度な能力を活用している。
事前訓練された大型AIモデルのゼロショット能力は、タスク固有のトレーニングを必要とせずに正確なチャネル予測を容易にし、その後、特定の車両用チャネルデータの微調整により予測精度が向上する。
大規模シミュレーションの結果,DDドメインチャネル予測フレームワークの有効性と,時系列チャネルパラメータの予測における大規模AIモデルの有効性を実証し,ロバストな車両通信システムへのアプローチの可能性を強調した。
関連論文リスト
- Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
ドローンが捉えたデータは、大規模都市ネットワークのための正確なマルチセンサー移動観測所を作ることができる。
単純なグラフベースモデルHiMSNetは、複数のデータモダリティと学習時間相関を統合するために提案されている。
論文 参考訳(メタデータ) (2025-01-07T03:23:28Z) - Causally-Aware Spatio-Temporal Multi-Graph Convolution Network for Accurate and Reliable Traffic Prediction [5.200012764049096]
本研究は,高精度かつ信頼性の高い予測を行うための高度な深層学習モデルを実証するために,時間的問題-トラヒック予測の事例に焦点を当てた。
本稿では,3つの主要コンポーネントを有効活用し,高精度かつ信頼性の高いトラフィック予測を行う,エンドツーエンドのトラフィック予測フレームワークを提案する。
2つの実世界の交通データセットの実験結果から,この手法は予測精度においていくつかの最先端モデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-08-23T14:35:54Z) - A Multi-Channel Spatial-Temporal Transformer Model for Traffic Flow Forecasting [0.0]
交通流予測のための多チャンネル時空間変圧器モデルを提案する。
トラフィックデータの異なるチャネルから結果を抽出することにより、予測の精度を向上させる。
6つの実世界のデータセットの実験結果から,時間モデルにマルチチャネル機構を導入することにより,性能が向上することが示された。
論文 参考訳(メタデータ) (2024-05-10T06:37:07Z) - GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction [15.731398013255179]
マルチモーダル軌道予測のための木サンプリングを用いたゴールガイド拡散モデルを提案する。
2段階のツリーサンプリングアルゴリズムが提案され、一般的な特徴を活用して推論時間を短縮し、マルチモーダル予測の精度を向上させる。
実験により,提案フレームワークは,公開データセットにおけるリアルタイム推論速度と同等の最先端性能を達成できることが実証された。
論文 参考訳(メタデータ) (2023-11-25T03:55:06Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - TransFollower: Long-Sequence Car-Following Trajectory Prediction through
Transformer [44.93030718234555]
本研究では,アテンションベーストランスフォーマーモデルに基づく自動車追従軌道予測モデルを提案する。
上海博物学運転研究会(SH-NDS)から抽出した実世界112,597台の乗用車追跡イベントを用いて、我々のモデルを訓練・試験する。
論文 参考訳(メタデータ) (2022-02-04T07:59:22Z) - Causal-based Time Series Domain Generalization for Vehicle Intention
Prediction [19.944268567657307]
交通参加者の行動の正確な予測は、自動運転車にとって必須の能力である。
本稿では,車両意図予測タスクにおける領域一般化問題に対処することを目的とする。
提案手法は、他の最先端領域の一般化や振る舞い予測手法と比較して、予測精度を一貫して改善する。
論文 参考訳(メタデータ) (2021-12-03T18:58:07Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
本研究では,ミリ波(mmWave)大規模マルチインプット多重出力(MIMO)システムのためのエンドツーエンドの深層学習に基づくジョイントトランスシーバ設計アルゴリズムを提案する。
我々は受信したパイロットを受信機でフィードバックビットにマッピングし、さらに送信機でハイブリッドプリコーダにフィードバックビットをマッピングするDNNアーキテクチャを開発した。
論文 参考訳(メタデータ) (2021-10-22T20:49:02Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
本研究の目的は,自動走行システムにおける操舵角度予測の精度の高いモデルを得ることである。
BOは限られた試行数で、BOST-LSTMと呼ばれるモデルを特定し、古典的なエンドツーエンド駆動モデルと比較して最も正確な結果を得た。
論文 参考訳(メタデータ) (2021-10-22T15:25:14Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
動脈交通予測は 現代のインテリジェント交通システムの発展に 重要な役割を担っています
動脈交通予測に関する既存の研究の多くは、ループセンサからの流量と占有率の時間的測定のみを考慮し、上流と下流の検出器間のリッチな空間的関係を無視している。
我々は,信号タイミング計画から発生する空間情報を用いて,深層学習アプローチである拡散畳み込みリカレントニューラルネットワークを強化することで,このギャップを埋める。
論文 参考訳(メタデータ) (2020-12-25T01:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。