論文の概要: CoInD: Enabling Logical Compositions in Diffusion Models
- arxiv url: http://arxiv.org/abs/2503.01145v1
- Date: Mon, 03 Mar 2025 03:51:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:44.683430
- Title: CoInD: Enabling Logical Compositions in Diffusion Models
- Title(参考訳): CoInD:拡散モデルにおける論理的構成の実現
- Authors: Sachit Gaudi, Gautam Sreekumar, Vishnu Boddeti,
- Abstract要約: 本稿では,標準条件拡散モデルが属性組成が統計的に独立であるという仮定に反することを示す。
我々はこの問題に対処するためにCoInDを提案する。
条件付き境界分布間の統計的独立を明示的に強制する。
- 参考スコア(独自算出の注目度): 1.0923877073891446
- License:
- Abstract: How can we learn generative models to sample data with arbitrary logical compositions of statistically independent attributes? The prevailing solution is to sample from distributions expressed as a composition of attributes' conditional marginal distributions under the assumption that they are statistically independent. This paper shows that standard conditional diffusion models violate this assumption, even when all attribute compositions are observed during training. And, this violation is significantly more severe when only a subset of the compositions is observed. We propose CoInD to address this problem. It explicitly enforces statistical independence between the conditional marginal distributions by minimizing Fisher's divergence between the joint and marginal distributions. The theoretical advantages of CoInD are reflected in both qualitative and quantitative experiments, demonstrating a significantly more faithful and controlled generation of samples for arbitrary logical compositions of attributes. The benefit is more pronounced for scenarios that current solutions relying on the assumption of conditionally independent marginals struggle with, namely, logical compositions involving the NOT operation and when only a subset of compositions are observed during training.
- Abstract(参考訳): 統計的に独立な属性の任意の論理的構成でデータをサンプリングするために生成モデルをどのように学習するか。
一般的な解決策は、属性が統計的に独立であるという仮定の下で、属性の条件付き境界分布の合成として表される分布からサンプリングすることである。
本稿では, 標準条件拡散モデルが, トレーニング中にすべての属性組成が観測された場合でも, この仮定に反することを示す。
そして、この違反は、構成のサブセットのみが観察される場合、はるかに深刻である。
我々はこの問題に対処するためにCoInDを提案する。
条件付き辺縁分布間の統計的独立性は、フィッシャーの合同分布と辺縁分布のばらつきを最小化することによって明確に強制される。
CoInDの理論的優位性は質的および定量的な実験の両方に反映され、属性の任意の論理組成に対するより忠実で制御されたサンプルの生成を示す。
この利点は、条件に依存しない辺縁関係の仮定に依存する現在のソリューションが、NOT操作を含む論理的構成と、トレーニング中に一部の構成のみが観察される場合に苦労するシナリオに対してより顕著である。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
条件付き拡散モデルは現代の画像合成の基礎となり、計算生物学や強化学習などの分野に広く応用されている。
経験的成功にもかかわらず、条件拡散モデルの理論はほとんど欠落している。
本稿では,条件拡散モデルを用いた分布推定の急激な統計的理論を提示することにより,ギャップを埋める。
論文 参考訳(メタデータ) (2024-03-18T17:08:24Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
異常検出(AD、Anomaly Detection)は、異常なサンプルを識別する機械学習タスクである。
分散シフトの制約の下では、トレーニングサンプルとテストサンプルが同じ分布から引き出されるという仮定が崩壊する。
我々は,異常検出モデルのレジリエンスを,異なる種類の分布シフトに高めようとしている。
論文 参考訳(メタデータ) (2023-12-21T23:20:47Z) - Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution [2.1146241717926664]
本稿では, 左非可逆なプッシュフォワード写像に制約されたワッサーシュタインGANが, 複製を回避し, 経験的分布から著しく逸脱する分布を生成することを示す。
我々の最も重要な寄与は、生成分布と経験的分布の間のワッサーシュタイン-1距離の有限サンプル下界を与える。
また、生成分布と真のデータ生成との距離に有限サンプル上限を確立する。
論文 参考訳(メタデータ) (2023-07-31T06:11:57Z) - Breaking the Spurious Causality of Conditional Generation via Fairness
Intervention with Corrective Sampling [77.15766509677348]
条件生成モデルは、トレーニングデータセットから急激な相関を継承することが多い。
これは別の潜在属性に対して不均衡なラベル条件分布をもたらす。
この問題を緩和するための一般的な2段階戦略を提案する。
論文 参考訳(メタデータ) (2022-12-05T08:09:33Z) - Contextuality scenarios arising from networks of stochastic processes [68.8204255655161]
経験的モデルは、その分布が X 上の合同分布を極小化することができなければ文脈的と言える。
我々は、多くのプロセス間の相互作用という、文脈的経験的モデルの異なる古典的な源泉を示す。
長期にわたるネットワークの統計的挙動は、経験的モデルを一般的な文脈的かつ強い文脈的にする。
論文 参考訳(メタデータ) (2020-06-22T16:57:52Z) - GANs with Conditional Independence Graphs: On Subadditivity of
Probability Divergences [70.30467057209405]
GAN(Generative Adversarial Networks)は、データセットの基盤となる分布を学習するための現代的な手法である。
GANは、基礎となるディストリビューションに関する追加情報がないモデルフリーで設計されている。
本稿では,ベイズネット/MRFの近傍に単純な識別器群を用いたモデルベースGANの設計を提案する。
論文 参考訳(メタデータ) (2020-03-02T04:31:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。