論文の概要: Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution
- arxiv url: http://arxiv.org/abs/2307.16422v2
- Date: Thu, 6 Jun 2024 14:00:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-08 00:59:06.762193
- Title: Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution
- Title(参考訳): 経験的分布からの最大偏差を考慮した統計的最適生成モデル
- Authors: Elen Vardanyan, Sona Hunanyan, Tigran Galstyan, Arshak Minasyan, Arnak Dalalyan,
- Abstract要約: 本稿では, 左非可逆なプッシュフォワード写像に制約されたワッサーシュタインGANが, 複製を回避し, 経験的分布から著しく逸脱する分布を生成することを示す。
我々の最も重要な寄与は、生成分布と経験的分布の間のワッサーシュタイン-1距離の有限サンプル下界を与える。
また、生成分布と真のデータ生成との距離に有限サンプル上限を確立する。
- 参考スコア(独自算出の注目度): 2.1146241717926664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the problem of generative modeling, aiming to simulate diverse examples from an unknown distribution based on observed examples. While recent studies have focused on quantifying the statistical precision of popular algorithms, there is a lack of mathematical evaluation regarding the non-replication of observed examples and the creativity of the generative model. We present theoretical insights into this aspect, demonstrating that the Wasserstein GAN, constrained to left-invertible push-forward maps, generates distributions that avoid replication and significantly deviate from the empirical distribution. Importantly, we show that left-invertibility achieves this without compromising the statistical optimality of the resulting generator. Our most important contribution provides a finite-sample lower bound on the Wasserstein-1 distance between the generative distribution and the empirical one. We also establish a finite-sample upper bound on the distance between the generative distribution and the true data-generating one. Both bounds are explicit and show the impact of key parameters such as sample size, dimensions of the ambient and latent spaces, noise level, and smoothness measured by the Lipschitz constant.
- Abstract(参考訳): 本稿では,観測例に基づいて未知分布から多種多様なサンプルをシミュレートすることを目的とした生成モデリングの課題について考察する。
近年の研究では、一般的なアルゴリズムの統計的精度の定量化に焦点が当てられているが、観測された例の非重複性や生成モデルの創造性に関する数学的評価は欠如している。
この側面に関する理論的知見として、ワッサーシュタイン GAN が左不逆のプッシュフォワード写像に制約され、複製を回避し、経験的分布から著しく逸脱する分布を生成することを示した。
重要なことは、生成元の統計的最適性を損なうことなく、左不可逆性がこれを達成できることである。
我々の最も重要な寄与は、生成分布と経験的分布の間のワッサーシュタイン-1距離の有限サンプル下界を与える。
また、生成分布と真のデータ生成との距離に有限サンプル上限を確立する。
どちらの境界も明示的であり、サンプルサイズ、周囲空間と潜伏空間の次元、騒音レベル、リプシッツ定数によって測定された滑らかさといった重要なパラメータの影響を示す。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
本研究では,条件付き深部生成モデルの推定のための可能性に基づくアプローチの大規模サンプル特性について検討する。
その結果,条件分布を推定するための最大極大推定器の収束率を導いた。
論文 参考訳(メタデータ) (2024-10-02T20:46:21Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
条件付き拡散モデルは現代の画像合成の基礎となり、計算生物学や強化学習などの分野に広く応用されている。
経験的成功にもかかわらず、条件拡散モデルの理論はほとんど欠落している。
本稿では,条件拡散モデルを用いた分布推定の急激な統計的理論を提示することにより,ギャップを埋める。
論文 参考訳(メタデータ) (2024-03-18T17:08:24Z) - A Note on the Convergence of Denoising Diffusion Probabilistic Models [3.1767625261233046]
拡散モデルにより得られたデータ生成分布と分布との間のワッサーシュタイン距離の定量的上限を導出する。
この分野でのこれまでの研究とは異なり、我々の結果は学習したスコア関数を仮定しない。
論文 参考訳(メタデータ) (2023-12-10T20:29:58Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - Score-based Generative Modeling Secretly Minimizes the Wasserstein
Distance [14.846377138993642]
スコアベースモデルはまた、モデル上の適切な仮定の下で、それらの間のワッサーシュタイン距離を最小化することを示した。
我々の証明は、社会に独立した関心を持つことのできる最適輸送理論の新たな応用に基づいている。
論文 参考訳(メタデータ) (2022-12-13T03:48:01Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Divergence Frontiers for Generative Models: Sample Complexity,
Quantization Level, and Frontier Integral [58.434753643798224]
多様性フロンティアは生成モデルの評価フレームワークとして提案されている。
分岐フロンティアのプラグイン推定器のサンプル複雑性の非漸近的境界を確立する。
また,スムーズな分布推定器の統計的性能を調べることにより,分散フロンティアの枠組みも強化する。
論文 参考訳(メタデータ) (2021-06-15T06:26:25Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
深部生成モデルを用いた特異分布の非パラメトリック推定の可能性について検討する。
我々は、インスタンスノイズでデータを摂動することで、新しい効果的な解が存在することを証明した。
また、より深い生成モデルにより効率的に推定できる分布のクラスを特徴付ける。
論文 参考訳(メタデータ) (2021-05-09T23:13:58Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
DAEとDSMの両方がスムーズな人口密度のスコアを推定することを示した。
次に、この結果をarXiv:1907.05600のホモトピー法に適用し、その経験的成功を理論的に正当化する。
論文 参考訳(メタデータ) (2020-01-31T23:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。