Purcell-enhanced emissions from diamond color centers in slow light photonic crystal waveguides
- URL: http://arxiv.org/abs/2503.01149v1
- Date: Mon, 03 Mar 2025 03:54:42 GMT
- Title: Purcell-enhanced emissions from diamond color centers in slow light photonic crystal waveguides
- Authors: Sophie W. Ding, Chang Jin, Kazuhiro Kuruma, Xinghan Guo, Michael Haas, Boris Korzh, Andrew Beyer, Matt Shaw, Neil Sinclair, David D. Awschalom, F. Joseph Heremans, Nazar Delegan, Alexander A. High, Marko Loncar,
- Abstract summary: Quantum memories based on emitters with optically addressable spins rely on efficient photonic interfaces.<n>These approaches require nearly perfect spectral and spatial overlap between the cavity mode and quantum emitter.<n>We demonstrate diamond slow light photonic crystal (PhC) waveguides that enable broadband optical coupling to embedded silicon-vacancy (SiV) color centers.
- Score: 30.37692909081502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum memories based on emitters with optically addressable spins rely on efficient photonic interfaces, often implemented as nanophotonic cavities with ideally narrow spectral linewidths and small mode volumes. However, these approaches require nearly perfect spectral and spatial overlap between the cavity mode and quantum emitter, which can be challenging. This is especially true in the case of solid-state quantum emitters that are often randomly positioned and can suffer from significant inhomogeneous broadening. An alternative approach to mitigate these challenges is to use slow-light waveguides that can enhance light-matter interaction across large optical bandwidths and large areas. Here, we demonstrate diamond slow light photonic crystal (PhC) waveguides that enable broadband optical coupling to embedded silicon-vacancy (SiV) color centers. We take advantage of the recently demonstrated thin-film diamond photonic platform to fabricate fully suspended two-dimensional PhC waveguides. Using this approach, we demonstrate waveguide modes with high group indices up to 70 and observe Purcell-enhanced emissions of the SiVs coupled to the waveguide mode. Our approach represents a practical diamond platform for robust spin-photon interfaces with color centers.
Related papers
- Scalable construction of hybrid quantum photonic cavities [0.0]
We introduce a concept that generates a finely tunable PhC cavity at a select wavelength between two heterogeneous optical materials.
The cavity is formed by stamping a hard-to-process material with simple waveguide geometries on top of an easy-to-process material.
We simulate our concept for the particularly challenging design problem of multiplexed quantum repeaters based on arrays of cavity-coupled diamond color centers.
arXiv Detail & Related papers (2024-10-04T18:36:39Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Systematic design of a robust half-W1 photonic crystal waveguide for
interfacing slow light and trapped cold atoms [0.0]
Novel platforms interfacing trapped cold atoms and guided light in nanoscale waveguides are a promising route to achieve a regime of strong coupling between light and atoms in single pass.
We propose to interface Rubidium atoms with a photonic-crystal waveguide based on a large-index GaInP slab.
arXiv Detail & Related papers (2023-01-11T19:01:07Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Broadband single-mode planar waveguides in monolithic 4H-SiC [0.0]
monolithic single-crystal integrated-photonic devices in SiC tuning optical properties via charge carrier concentration.
We fabricated monolithic SiC n-i-n and p-i-n junctions where the intrinsic layer acts as waveguide core, and demonstrate the waveguide functionality for these samples.
These waveguide types allow for addressing color-centers over a broad wavelength range with low strain-induced inhomogeneity of the optical-transition frequencies.
arXiv Detail & Related papers (2022-02-22T14:36:21Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Narrow-linewidth tin-vacancy centers in a diamond waveguide [5.229236508805071]
Negatively charged tin-vacancy (SnV$-$) centers in diamond have emerged as promising candidates for quantum emitters.
We demonstrate the coupling of SnV$-$ centers to a nanophotonic waveguide.
arXiv Detail & Related papers (2020-05-20T22:55:03Z) - Integrating two-photon nonlinear spectroscopy of rubidium atoms with
silicon photonics [0.0]
integrated silicon photonic chip, composed of several sub-wavelength ridge waveguides, immersed in a micro-cell with rubidium vapor.
We observe that the waveguide transmission spectrum gets modified when the photonic mode is coupled to rubidium atoms through its evanescent tail.
This work paves the way towards a miniaturized, low-power, and integrated hybrid atomic-photonic system compatible with CMOS technologies.
arXiv Detail & Related papers (2020-03-10T14:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.