Sea-Net: Squeeze-And-Excitation Attention Net For Diabetic Retinopathy
Grading
- URL: http://arxiv.org/abs/2010.15344v1
- Date: Thu, 29 Oct 2020 03:48:01 GMT
- Title: Sea-Net: Squeeze-And-Excitation Attention Net For Diabetic Retinopathy
Grading
- Authors: Ziyuan Zhao, Kartik Chopra, Zeng Zeng, Xiaoli Li
- Abstract summary: Diabetes is one of the most common disease in individuals.
Diabetic retinopathy (DR) is a complication of diabetes, which could lead to blindness.
DR grading based on retinal images provides a great diagnostic and prognostic value for treatment planning.
- Score: 9.181677987146418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diabetes is one of the most common disease in individuals. \textit{Diabetic
retinopathy} (DR) is a complication of diabetes, which could lead to blindness.
Automatic DR grading based on retinal images provides a great diagnostic and
prognostic value for treatment planning. However, the subtle differences among
severity levels make it difficult to capture important features using
conventional methods. To alleviate the problems, a new deep learning
architecture for robust DR grading is proposed, referred to as SEA-Net, in
which, spatial attention and channel attention are alternatively carried out
and boosted with each other, improving the classification performance. In
addition, a hybrid loss function is proposed to further maximize the
inter-class distance and reduce the intra-class variability. Experimental
results have shown the effectiveness of the proposed architecture.
Related papers
- CLIP-DR: Textual Knowledge-Guided Diabetic Retinopathy Grading with Ranking-aware Prompting [48.47935559597376]
Diabetic retinopathy (DR) is a complication of diabetes and usually takes decades to reach sight-threatening levels.
Most current DR grading methods suffer from insufficient robustness to data variability.
We propose a novel DR grading framework CLIP-DR based on three observations.
arXiv Detail & Related papers (2024-07-04T17:14:18Z) - Generalizing to Unseen Domains in Diabetic Retinopathy Classification [8.59772105902647]
We study the problem of generalizing a model to unseen distributions or domains in diabetic retinopathy classification.
We propose a simple and effective domain generalization (DG) approach that achieves self-distillation in vision transformers.
We report the performance of several state-of-the-art DG methods on open-source DR classification datasets.
arXiv Detail & Related papers (2023-10-26T09:11:55Z) - Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced
Feature Extraction Processing [0.0]
This research aims to improve diabetic retinopathy diagnosis by developing an enhanced deep learning model for timely DR identification.
The proposed model will detect various lesions from retinal images in the early stages.
arXiv Detail & Related papers (2023-05-08T14:17:33Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - Deep AUC Maximization for Medical Image Classification: Challenges and
Opportunities [60.079782224958414]
We will present and discuss opportunities and challenges brought by a new deep learning method by AUC (aka underlinebf Deep underlinebf AUC classification)
arXiv Detail & Related papers (2021-11-01T15:31:32Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Diabetic Retinopathy Detection using Ensemble Machine Learning [1.2891210250935146]
Diabetic Retinopathy (DR) is among the worlds leading vision loss causes in diabetic patients.
DR is a microvascular disease that affects the eye retina, which causes vessel blockage and cuts the main source of nutrition for the retina tissues.
arXiv Detail & Related papers (2021-06-22T17:36:08Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Learning Discriminative Representations for Fine-Grained Diabetic
Retinopathy Grading [6.129288755571804]
Diabetic retinopathy is one of the leading causes of blindness.
To determine the disease severity levels, ophthalmologists need to focus on the discriminative parts of the fundus images.
arXiv Detail & Related papers (2020-11-04T04:16:55Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based
on Structural and Angiographic Optical Coherence Tomography [1.9262162668141078]
A convolutional neural network (CNN) based method is proposed to fulfill a diabetic retinopathy (DR) classification framework.
A densely and continuously connected neural network with adaptive rate dropout (DcardNet) is designed for the DR classification.
Three separate classification levels are generated for each case based on the International Clinical Diabetic Retinopathy scale.
arXiv Detail & Related papers (2020-06-09T19:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.