論文の概要: Soybean Disease Detection via Interpretable Hybrid CNN-GNN: Integrating MobileNetV2 and GraphSAGE with Cross-Modal Attention
- arxiv url: http://arxiv.org/abs/2503.01284v1
- Date: Mon, 03 Mar 2025 08:12:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:12.283331
- Title: Soybean Disease Detection via Interpretable Hybrid CNN-GNN: Integrating MobileNetV2 and GraphSAGE with Cross-Modal Attention
- Title(参考訳): 解釈可能なハイブリッドCNN-GNNによる大豆病検出:MobileNetV2とGraphSAGEの統合と相互注意
- Authors: Md Abrar Jahin, Soudeep Shahriar, M. F. Mridha, Nilanjan Dey,
- Abstract要約: 大豆の葉の病原体の検出は農業の生産性にとって重要であるが、視覚的に類似した症状と限定的な解釈可能性のために課題に直面している。
本稿では,局所化特徴抽出のためのMobileNetV2とリレーショナルモデリングのためのGraphSAGEを相乗化する,解釈可能なハイブリッドCNN-Graph Neural Network(GNN)フレームワークを提案する。
クロスモーダル解釈はGrad-CAMおよびEigen-CAMビジュアライゼーションを通じて実現され、熱マップを生成して疾患の流入領域をハイライトする。
- 参考スコア(独自算出の注目度): 2.0681376988193843
- License:
- Abstract: Soybean leaf disease detection is critical for agricultural productivity but faces challenges due to visually similar symptoms and limited interpretability in conventional methods. While Convolutional Neural Networks (CNNs) excel in spatial feature extraction, they often neglect inter-image relational dependencies, leading to misclassifications. This paper proposes an interpretable hybrid Sequential CNN-Graph Neural Network (GNN) framework that synergizes MobileNetV2 for localized feature extraction and GraphSAGE for relational modeling. The framework constructs a graph where nodes represent leaf images, with edges defined by cosine similarity-based adjacency matrices and adaptive neighborhood sampling. This design captures fine-grained lesion features and global symptom patterns, addressing inter-class similarity challenges. Cross-modal interpretability is achieved via Grad-CAM and Eigen-CAM visualizations, generating heatmaps to highlight disease-influential regions. Evaluated on a dataset of ten soybean leaf diseases, the model achieves $97.16\%$ accuracy, surpassing standalone CNNs ($\le95.04\%$) and traditional machine learning models ($\le77.05\%$). Ablation studies validate the sequential architecture's superiority over parallel or single-model configurations. With only 2.3 million parameters, the lightweight MobileNetV2-GraphSAGE combination ensures computational efficiency, enabling real-time deployment in resource-constrained environments. The proposed approach bridges the gap between accurate classification and practical applicability, offering a robust, interpretable tool for agricultural diagnostics while advancing CNN-GNN integration in plant pathology research.
- Abstract(参考訳): 大豆の葉の病原体検出は農業生産性にとって重要であるが、従来の方法では視覚的に類似した症状と限定的な解釈可能性のために課題に直面している。
畳み込みニューラルネットワーク(CNN)は空間的特徴抽出に優れるが、画像間の依存関係を無視することが多く、誤分類につながる。
本稿では,局所化特徴抽出のためのMobileNetV2とリレーショナルモデリングのためのGraphSAGEを相乗化する,解釈可能なハイブリッドCNN-Graph Neural Network(GNN)フレームワークを提案する。
このフレームワークは、ノードが葉のイメージを表現するグラフを構築し、コサイン類似性に基づく隣接行列と適応的な近傍サンプリングによりエッジが定義される。
このデザインは、クラス間の類似性の問題に対処するため、微細な病変の特徴とグローバルな症状パターンをキャプチャする。
クロスモーダル解釈はGrad-CAMおよびEigen-CAMビジュアライゼーションを通じて実現され、熱マップを生成して疾患の流入領域をハイライトする。
10種類の大豆葉病のデータセットから評価すると、このモデルは9,7.16 %の精度を達成し、スタンドアロンのCNN($\le95.04 %$)と従来の機械学習モデル($\le77.05 %$)を上回っている。
アブレーション研究は、並列または単一モデル構成よりもシーケンシャルアーキテクチャの優位性を検証する。
わずか230万のパラメータで、軽量なMobileNetV2-GraphSAGEの組み合わせにより、計算効率が保証され、リソースに制約のある環境でリアルタイムにデプロイできる。
提案手法は,植物病理学研究におけるCNN-GNN統合を推し進めつつ,農業診断のための堅牢で解釈可能なツールを提供することにより,正確な分類と実用性の間のギャップを埋めるものである。
関連論文リスト
- Adaptive Clustering for Efficient Phenotype Segmentation of UAV Hyperspectral Data [1.6135226672466307]
無人航空機 (UAV) とハイパースペクトルイメージング (HSI) が組み合わさって、環境および農業用途の可能性を秘めている。
本稿では,リアルタイムツリー表現型セグメンテーションのためのオンラインハイパースペクトル簡易線形反復クラスタリングアルゴリズム(OHSLIC)を提案する。
論文 参考訳(メタデータ) (2025-01-17T13:48:04Z) - Explainable Spatio-Temporal GCNNs for Irregular Multivariate Time Series: Architecture and Application to ICU Patient Data [7.433698348783128]
XST-CNN(eXG-Temporal Graph Conal Neural Network)は、不均一で不規則なマルチ時系列(MTS)データを処理するための新しいアーキテクチャである。
提案手法は,GCNNパイプラインを利用して時間的・時間的統合パイプライン内での時間的特徴を捉える。
ICU患者のマルチドラッグ抵抗(MDR)を予測するために,実世界の電子健康記録データを用いてXST-CNNを評価した。
論文 参考訳(メタデータ) (2024-11-01T22:53:17Z) - TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
医用画像セグメンテーションのための新しいディープラーニングアーキテクチャを提案する。
提案モデルでは,10の公開データセット上でのテクニックの現状に対して,一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-09-05T09:14:03Z) - Mew: Multiplexed Immunofluorescence Image Analysis through an Efficient Multiplex Network [84.88767228835928]
マルチプレックスネットワークのレンズを通してmIF画像を効率的に処理する新しいフレームワークであるMewを紹介する。
Mew は、幾何学情報のための Voronoi ネットワークと、セルワイドの均一性を捉えるセル型ネットワークという、2つの異なる層からなる多重ネットワークを革新的に構築する。
このフレームワークは、トレーニング中にグラフ全体を処理できるスケーラブルで効率的なグラフニューラルネットワーク(GNN)を備えている。
論文 参考訳(メタデータ) (2024-07-25T08:22:30Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
本稿では,重要なグラフノード間の接続を強く表現するために,RGBチャネルの特徴値の相互接続性を活用し,GNNとエッジ畳み込みを組み合わせた新しいモデルを提案する。
提案モデルでは,最新のDeep Neural Networks (DNN) と同等に動作するが,1000倍のパラメータが減少し,トレーニング時間とデータ要求が短縮される。
論文 参考訳(メタデータ) (2023-07-24T13:39:21Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
本稿では,WSI分析のために,異なる種類の核間の相互関係を利用する新しいグラフベースのフレームワークを提案する。
具体的には、WSI を各ノードに "nucleus-type" 属性と各エッジに類似した意味属性を持つ異種グラフとして定式化する。
我々のフレームワークは、様々なタスクに対してかなりのマージンで最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-07-09T14:43:40Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - A Spatial-Temporal Graph Based Hybrid Infectious Disease Model with
Application to COVID-19 [3.785123406103385]
新型コロナウイルスのパンデミックが進むにつれて、信頼できる予測が政策立案に重要な役割を果たす。
RNNのようなデータ駆動機械学習モデルは、COVID-19のような時系列データに制限がある場合に悩まされる可能性がある。
グラフ構造上にSEIRとRNNを組み合わせることで,学習と予測の精度と効率を両立させるハイブリッド時間モデルを構築する。
論文 参考訳(メタデータ) (2020-10-18T19:34:54Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
本稿では,AEP-Net と呼ばれる協調的コンテキスト符号化ネットワークを提案する。
具体的には、画像とマスクのより優れた特徴融合のための協調的な特徴変換分岐と、エラー領域の正確な局所化を提案する。
AEP-Netはエラー予測タスクの平均DSCが0.8358,0.8164であり、ピアソン相関係数が0.9873である。
論文 参考訳(メタデータ) (2020-06-25T12:42:01Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。