Learning Actionable World Models for Industrial Process Control
- URL: http://arxiv.org/abs/2503.01411v3
- Date: Fri, 25 Apr 2025 09:11:20 GMT
- Title: Learning Actionable World Models for Industrial Process Control
- Authors: Peng Yan, Ahmed Abdulkadir, Gerrit A. Schatte, Giulia Aguzzi, Joonsu Gha, Nikola Pascher, Matthias Rosenthal, Yunlong Gao, Benjamin F. Grewe, Thilo Stadelmann,
- Abstract summary: An effective AI system must learn about the behavior of the complex system from very limited training data.<n>We propose a novel methodology that disentangles process parameters in the learned latent representation.<n>This makes changes in representations predictable from changes in inputs and vice versa, facilitating interpretability of key factors responsible for process variations.
- Score: 5.870452455598225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To go from (passive) process monitoring to active process control, an effective AI system must learn about the behavior of the complex system from very limited training data, forming an ad-hoc digital twin with respect to process inputs and outputs that captures the consequences of actions on the process's world. We propose a novel methodology based on learning world models that disentangles process parameters in the learned latent representation, allowing for fine-grained control. Representation learning is driven by the latent factors influencing the processes through contrastive learning within a joint embedding predictive architecture. This makes changes in representations predictable from changes in inputs and vice versa, facilitating interpretability of key factors responsible for process variations, paving the way for effective control actions to keep the process within operational bounds. The effectiveness of our method is validated on the example of plastic injection molding, demonstrating practical relevance in proposing specific control actions for a notoriously unstable process.
Related papers
- What Changed and What Could Have Changed? State-Change Counterfactuals for Procedure-Aware Video Representation Learning [22.00652926645987]
We study procedure-aware video representation learning by incorporating state-change descriptions.
We generate state-change counterfactuals that simulate hypothesized failure outcomes.
Our results demonstrate the effectiveness of the proposed state-change descriptions and their counterfactuals.
arXiv Detail & Related papers (2025-03-27T00:03:55Z) - REVEAL-IT: REinforcement learning with Visibility of Evolving Agent poLicy for InTerpretability [23.81322529587759]
REVEAL-IT is a novel framework for explaining the learning process of an agent in complex environments.
We visualize the policy structure and the agent's learning process for various training tasks.
A GNN-based explainer learns to highlight the most important section of the policy, providing a more clear and robust explanation of the agent's learning process.
arXiv Detail & Related papers (2024-06-20T11:29:26Z) - The Artificial Neural Twin -- Process Optimization and Continual Learning in Distributed Process Chains [3.79770624632814]
We propose the Artificial Neural Twin, which combines concepts from model predictive control, deep learning, and sensor networks.
Our approach introduces differentiable data fusion to estimate the state of distributed process steps.
By treating the interconnected process steps as a quasi neural-network, we can backpropagate loss gradients for process optimization or model fine-tuning to process parameters.
arXiv Detail & Related papers (2024-03-27T08:34:39Z) - Exploiting Symmetry and Heuristic Demonstrations in Off-policy
Reinforcement Learning for Robotic Manipulation [1.7901837062462316]
This paper aims to define and incorporate the natural symmetry present in physical robotic environments.
The proposed method is validated via two point-to-point reaching tasks of an industrial arm, with and without an obstacle.
A comparison study between the proposed method and a traditional off-policy reinforcement learning algorithm indicates its advantage in learning performance and potential value for applications.
arXiv Detail & Related papers (2023-04-12T11:38:01Z) - Learning to Generate All Feasible Actions [4.333208181196761]
We introduce action mapping, a novel approach that divides the learning process into two steps: first learn feasibility and subsequently, the objective.
This paper focuses on the feasibility part by learning to generate all feasible actions through self-supervised querying of the feasibility model.
We demonstrate the agent's proficiency in generating actions across disconnected feasible action sets.
arXiv Detail & Related papers (2023-01-26T23:15:51Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
The paper studies existing methods in this field via a Systematic Literature Review ( SLR)
The SLR provides insights into challenges and areas for future research that could enhance the usefulness and applicability of prescriptive process monitoring methods.
arXiv Detail & Related papers (2021-12-03T08:06:24Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - On Contrastive Representations of Stochastic Processes [53.21653429290478]
Learning representations of processes is an emerging problem in machine learning.
We show that our methods are effective for learning representations of periodic functions, 3D objects and dynamical processes.
arXiv Detail & Related papers (2021-06-18T11:00:24Z) - Hierarchical Variational Imitation Learning of Control Programs [131.7671843857375]
We propose a variational inference method for imitation learning of a control policy represented by parametrized hierarchical procedures (PHP)
Our method discovers the hierarchical structure in a dataset of observation-action traces of teacher demonstrations, by learning an approximate posterior distribution over the latent sequence of procedure calls and terminations.
We demonstrate a novel benefit of variational inference in the context of hierarchical imitation learning: in decomposing the policy into simpler procedures, inference can leverage acausal information that is unused by other methods.
arXiv Detail & Related papers (2019-12-29T08:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.