論文の概要: Parameter-Efficient Fine-Tuning of Large Language Models via Deconvolution in Subspace
- arxiv url: http://arxiv.org/abs/2503.01419v1
- Date: Mon, 03 Mar 2025 11:15:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:25:14.639149
- Title: Parameter-Efficient Fine-Tuning of Large Language Models via Deconvolution in Subspace
- Title(参考訳): 部分空間のデコンボリューションによる大規模言語モデルのパラメータ効率の良い微調整
- Authors: Jia-Chen Zhang, Yu-Jie Xiong, Chun-Ming Xia, Dong-Hai Zhu, Xi-He Qiu,
- Abstract要約: 様々な下流タスクのための微調整大型言語モデル(LLM)が新しいパラダイムとなった。
Low-Rank Adaptation (LoRA)はそのパラメータ効率でよく知られている。
我々は新しい方法を提案する。
効率の良い分解はDCFTと呼ばれ、部分空間のデコンボリューションを介して行われる。
- 参考スコア(独自算出の注目度): 3.7049613588433497
- License:
- Abstract: Large language model (LLM) is considered a milestone towards achieving Artificial General Intelligence (AGI). With its advanced emergent capabilities, it adapt to a wide range of specific applications. Fine-tuning LLMs for various downstream tasks has become a new paradigm. Low-Rank Adaptation (LoRA) is well-known for its parameter efficiency. It can reduce the number of parameters needed to fine-tune LLMs by several orders of magnitude. However, LoRA-based approaches encounter a significant limitation due to the bottleneck imposed by rank one decomposition. As the parameters count in LLMs increase, even rank one decomposition might surpass the number of parameters truly necessary for handling more downstream tasks. In this paper, we propose a new method for Parameter-Efficient Fine-Tuning (PEFT) via deconvolution in subspace, dubbed as DCFT. We innovatively use deconvolution to complete details and enhance knowledge in subspace incremental matrices, and dynamically control parameters by adjusting the kernel size, unconstrained by rank-one decomposition. Extensive experiments are conducted to validate the effectiveness of DCFT. Results show that compared to LoRA, DCFT achieve an 8$\times$ reduction in parameters, and still achieves highly impressive performance. Our code is available here: https://github.com/Godz-z/DCFT.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人工知能(AGI)の実現に向けたマイルストーンと考えられている。
先進的な能力によって、幅広い特定のアプリケーションに適応する。
様々な下流タスクのための微調整 LLM が新しいパラダイムとなっている。
Low-Rank Adaptation (LoRA)はそのパラメータ効率でよく知られている。
LLMを微調整するのに必要なパラメータの数を数桁減らすことができる。
しかし、ランク1分解によるボトルネックのため、LoRAベースのアプローチは重大な制限に直面している。
LLMのパラメータが増加するにつれて、ランク1の分解でさえ、下流のタスクを扱うのに本当に必要なパラメータの数を上回ります。
本稿では,DCFTと呼ばれる部分空間のデコンボリューションによるパラメータ効率の良いファインチューニング(PEFT)の新しい手法を提案する。
我々はデコンボリューション(deconvolution)を革新的に使用し、サブスペースインクリメンタル行列における知識の完全化と強化を行い、ランクワン分解で制約されないカーネルサイズを調整することによって動的にパラメータを制御する。
DCFTの有効性を検証するために大規模な実験を行った。
結果は、LoRAと比較して、DCFTはパラメータの8$\times$の削減を実現し、それでも非常に印象的な性能を実現していることを示している。
私たちのコードは、https://github.com/Godz-z/DCFT.comで利用可能です。
関連論文リスト
- IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models [68.55148272295916]
IntLoRAを提案し、整数型(INT)低ランクパラメータを用いて効率限界を押し上げ、量子化拡散モデルに適応させる。
IntLoRAには3つの大きな利点がある: (i) 微調整の場合、事前トレーニングされた重みは量子化され、メモリ使用量が減少する (ii) ストレージの場合、事前トレーニングされた重みと低ランクの重みの両方が、ディスクスペースを少なく消費するINT内にある; (iii) 推論の場合、IntLoRA重みは、効率的な整数乗算やビットシフトによって自然に量子化された事前トレーニングされた重みにマージできる。
論文 参考訳(メタデータ) (2024-10-29T05:50:17Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - LoLDU: Low-Rank Adaptation via Lower-Diag-Upper Decomposition for Parameter-Efficient Fine-Tuning [4.616740762629019]
Low-Rank Adaptation (LoRA) は、大規模な更新パラメータをフル微調整で処理する問題に対処しようと試みている。
トレーニング可能なパラメータを2600倍に削減する,PEFT(Suboptimal-Efficient Fine-Tuning)アプローチであるLoLDUを提案する。
論文 参考訳(メタデータ) (2024-10-17T14:51:17Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、PEFT (Efficient Fine Tuning) 法として人気がある。
よりコンパクトで柔軟な表現を可能にする高階Candecomp/Parafac(CP)分解を提案する。
本手法は,比較性能を維持しつつパラメータ数を削減できる。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - LoRA$^2$ : Multi-Scale Low-Rank Approximations for Fine-Tuning Large Language Models [3.7049613588433497]
Low-Rank Adaptation (LoRA)は、微調整のためのトレーニング可能なパラメータの数を著しく削減する。
LoRAを複数のスケールに拡張し、LoRA$2$と名付けます。
論文 参考訳(メタデータ) (2024-08-13T12:31:30Z) - Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning [38.80020737321214]
構造化非制限ランク行列(SURM)に基づく効率的なパラメータ微調整(PEFT)のためのフレームワークを提案する。
SURMは、LoRAの低ランク行列を置換しながら、様々な画像分類タスクにおいて5-7%の精度向上を実現している。
また、GLUEベンチマークでは、アダプタのパラメータ数を最大12倍に削減する(ほぼ品質が低下する)。
論文 参考訳(メタデータ) (2024-06-25T17:26:05Z) - Scaling Sparse Fine-Tuning to Large Language Models [67.59697720719672]
大きな言語モデル(LLM)は、パラメータの数が多いため、完全な微調整が難しい。
本研究では,パラメータの配列とパラメータのデルタを事前学習した値に対して保持する新しいスパース微調整法SpIELを提案する。
提案手法は,LoRAのようなパラメータ効率の高い微調整法よりも性能が優れ,実行時間も同等であることを示す。
論文 参考訳(メタデータ) (2024-01-29T18:43:49Z) - IncreLoRA: Incremental Parameter Allocation Method for
Parameter-Efficient Fine-tuning [15.964205804768163]
IncreLoRAは、トレーニング中にトレーニング可能なパラメータを適応的に追加するインクリメンタルパラメータ割り当て手法である。
我々は,IncreLoRAの有効性を示すため,GLUEの広範な実験を行った。
論文 参考訳(メタデータ) (2023-08-23T10:08:10Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
我々はこれらの課題を克服するために、クロスモーダル転送(Aurora)のための優雅なプロンプトフレームワークを提案する。
既存のアーキテクチャの冗長性を考慮すると、まずモード近似を用いて0.1Mのトレーニング可能なパラメータを生成し、マルチモーダルプロンプトチューニングを実装する。
6つのクロスモーダルベンチマークの徹底的な評価は、最先端のベンチマークを上回るだけでなく、完全な微調整アプローチよりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-15T06:40:56Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
下流タスクで訓練済みの大規模言語モデルを微調整することは、NLPにおいて重要なパラダイムとなっている。
重み行列のパラメータ予算をその重要度に応じて適応的に割り当てるAdaLoRAを提案する。
我々は,AdaLoRAの有効性を検証するために,自然言語処理,質問応答,自然言語生成に関する事前学習モデルを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-03-18T22:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。