論文の概要: Position: Ensuring mutual privacy is necessary for effective external evaluation of proprietary AI systems
- arxiv url: http://arxiv.org/abs/2503.01470v1
- Date: Mon, 03 Mar 2025 12:24:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:26:57.472738
- Title: Position: Ensuring mutual privacy is necessary for effective external evaluation of proprietary AI systems
- Title(参考訳): 位置: プロプライエタリAIシステムの効果的な外部評価には相互プライバシの確保が必要である
- Authors: Ben Bucknall, Robert F. Trager, Michael A. Osborne,
- Abstract要約: AIシステムの外部評価は、その潜在的なリスクを理解するための重要なアプローチとして、ますます認識されている。
実際に外部評価を行うことは、評価者のシステムアクセスとAI開発者のプライバシとセキュリティ上の懸念のバランスをとる上で、大きな課題に直面します。
- 参考スコア(独自算出の注目度): 17.53028680356076
- License:
- Abstract: The external evaluation of AI systems is increasingly recognised as a crucial approach for understanding their potential risks. However, facilitating external evaluation in practice faces significant challenges in balancing evaluators' need for system access with AI developers' privacy and security concerns. Additionally, evaluators have reason to protect their own privacy - for example, in order to maintain the integrity of held-out test sets. We refer to the challenge of ensuring both developers' and evaluators' privacy as one of providing mutual privacy. In this position paper, we argue that (i) addressing this mutual privacy challenge is essential for effective external evaluation of AI systems, and (ii) current methods for facilitating external evaluation inadequately address this challenge, particularly when it comes to preserving evaluators' privacy. In making these arguments, we formalise the mutual privacy problem; examine the privacy and access requirements of both model owners and evaluators; and explore potential solutions to this challenge, including through the application of cryptographic and hardware-based approaches.
- Abstract(参考訳): AIシステムの外部評価は、その潜在的なリスクを理解するための重要なアプローチとして、ますます認識されている。
しかし、実際には外部評価の促進は、評価者のシステムアクセスとAI開発者のプライバシとセキュリティ上の懸念のバランスをとる上で大きな課題に直面している。
さらに、評価者は自身のプライバシを保護する理由があります。例えば、ホールドアウトテストセットの整合性を維持するためにです。
開発者のプライバシと評価者のプライバシを両立させるという課題を,相互プライバシの提供のひとつとして取り上げる。
本稿では,その立場を論じる。
一 この相互プライバシー問題に対処することは、AIシステムの効果的な外部評価に不可欠である。
(二 外部評価を容易にするための現在の手法は、特に評価者のプライバシーを守る上では、この課題に不適当に対処している。)
これらの議論を行う際には、相互プライバシーの問題の形式化、モデル所有者と評価者の双方のプライバシとアクセス要件の検証、暗号およびハードウェアベースのアプローチの適用などを含む、この課題に対する潜在的な解決策を探る。
関連論文リスト
- Toward Ethical AI: A Qualitative Analysis of Stakeholder Perspectives [0.0]
この研究は、AIシステムのプライバシーに関するステークホルダーの視点を探求し、教育者、親、AI専門家に焦点をあてる。
この研究は、227人の参加者による調査回答の質的分析を用いて、データ漏洩、倫理的誤用、過剰なデータ収集を含む主要なプライバシーリスクを特定する。
この調査結果は、堅牢なプライバシ保護とAIのメリットのバランスに関する実用的な洞察を提供する。
論文 参考訳(メタデータ) (2025-01-23T02:06:25Z) - Privacy Risks of General-Purpose AI Systems: A Foundation for Investigating Practitioner Perspectives [47.17703009473386]
強力なAIモデルによって、幅広いタスクでパフォーマンスが飛躍的に向上した。
プライバシの懸念は、さまざまなプライバシのリスクとAIモデルの脆弱性をカバーした、豊富な文献につながっている。
我々はこれらの調査論文の体系的なレビューを行い、GPAISにおけるプライバシーリスクの簡潔かつ有用な概観を提供する。
論文 参考訳(メタデータ) (2024-07-02T07:49:48Z) - Centering Policy and Practice: Research Gaps around Usable Differential Privacy [12.340264479496375]
我々は、差分プライバシーは理論上はクリーンな定式化であるが、実際は重大な課題を提起していると論じている。
差分プライバシーの約束と現実世界のユーザビリティのギャップを埋めるために、研究者と実践者は協力しなければなりません。
論文 参考訳(メタデータ) (2024-06-17T21:32:30Z) - Experts-in-the-Loop: Establishing an Effective Workflow in Crafting
Privacy Q&A [0.0]
プライバシポリシをプライバシ質問応答(Q&A)ペアに変換する動的ワークフローを提案する。
そこで我々は,法の専門家と会話デザイナーの学際的なコラボレーションを促進する。
提案するワークフローは,プライバシQ&Aの構築を通じて継続的改善と監視の基盤となる。
論文 参考訳(メタデータ) (2023-11-18T20:32:59Z) - Technocracy, pseudoscience and performative compliance: the risks of
privacy risk assessments. Lessons from NIST's Privacy Risk Assessment
Methodology [0.0]
プライバシ・リスク・アセスメントは、組織がプライバシ・バイ・デザインを実装することを奨励する、客観的で原則化された方法として評価されてきた。
既存のガイドラインや手法はあいまいであり、プライバシーの害に関する実証的な証拠はほとんどない。
実用的で技術的アプローチの限界と落とし穴を強調します。
論文 参考訳(メタデータ) (2023-08-24T01:32:35Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
差分プライバシ(DP)分野における現状と現状の方法論の詳細なレビューを行う。
論文のポイントとハイレベルな内容は,「認知プライバシ(DP:次のフロンティアへの挑戦)」の議論から生まれた。
この記事では、プライバシの領域におけるアルゴリズムおよび設計決定の基準点を提供することを目標とし、重要な課題と潜在的研究の方向性を強調します。
論文 参考訳(メタデータ) (2023-04-14T05:29:18Z) - Differential Privacy and Fairness in Decisions and Learning Tasks: A
Survey [50.90773979394264]
プライバシーと公正が目標と一致したり、対照的になったりした条件をレビューする。
意思決定問題や学習タスクにおいて、DPが偏見や不公平を悪化させる理由と理由を分析します。
論文 参考訳(メタデータ) (2022-02-16T16:50:23Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。