Photon Routing Induced by Giant Atoms in a Synthetic Frequency Dimension
- URL: http://arxiv.org/abs/2503.01546v1
- Date: Mon, 03 Mar 2025 13:52:55 GMT
- Title: Photon Routing Induced by Giant Atoms in a Synthetic Frequency Dimension
- Authors: Ruolin Chai, Guoqing Cai, Qiongtao Xie, Huaizhi Wu, Yong Li,
- Abstract summary: We propose a hardware-efficient photon routing scheme based on a dynamically modulated multi-mode ring resonator and a driven cyclic three-level artificial atom.<n>We show that by tuning the phase of the driving field, the photon transmission between the two frequency lattices can be well controlled.
- Score: 3.8495199756519343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a hardware-efficient photon routing scheme based on a dynamically modulated multi-mode ring resonator and a driven cyclic three-level artificial atom, which effectively models a two-level giant atom coupled to a pair of one-dimensional lattices in a synthetic frequency dimension. The routing dynamics of single-photon wave packets in the frequency dimension are investigated numerically and analytically. Our results show that by tuning the phase of the driving field, the photon transmission between the two frequency lattices can be well controlled, thereby determining the propagation direction of photons within the ring resonator. This work presents a feasible scheme for implementing a controllable node in quantum networks, and the predictions of this scheme are well within reach of state-of-the-art experiments.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Few-Body Quantum Chaos, Localization, and Multi-Photon Entanglement in Optical Synthetic Frequency Dimension [12.86091921421344]
We propose a novel approach to generate controllable frequency-entangled photons by using the concept of synthetic frequency dimension in an optical system.
This work is the first to explore rich and controllable quantum phases beyond single particle in a synthetic dimension.
arXiv Detail & Related papers (2024-06-11T15:14:21Z) - Exact solution of a lambda quantum system driven by a two-photon
wavepacket [0.0]
We analytically find the non-perturbative dynamics of an atom driven by a two-photon wavepacket.
As an application, we study the dynamics of a quantum state purification.
arXiv Detail & Related papers (2023-12-08T20:24:24Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays [83.88591755871734]
We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
arXiv Detail & Related papers (2023-02-24T18:07:49Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Programmable directional emitter and receiver of itinerant microwave
photons in a waveguide [0.0]
The proposed device is an artificial molecule composed of two qubits coupled to a waveguide a quarter-wavelength apart.
We show that a photon is emitted directionally as a result of the destructive interference occurring either at the right or left of the qubits.
This artificial molecule possesses the capability of absorbing and transmitting an incoming photon on-demand.
arXiv Detail & Related papers (2020-04-04T12:53:08Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.