論文の概要: GRNFormer: A Biologically-Guided Framework for Integrating Gene Regulatory Networks into RNA Foundation Models
- arxiv url: http://arxiv.org/abs/2503.01682v1
- Date: Mon, 03 Mar 2025 15:56:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:34.901908
- Title: GRNFormer: A Biologically-Guided Framework for Integrating Gene Regulatory Networks into RNA Foundation Models
- Title(参考訳): GRNFormer:RNAファンデーションモデルに遺伝子制御ネットワークを統合するための生物学的ガイド付きフレームワーク
- Authors: Mufan Qiu, Xinyu Hu, Fengwei Zhan, Sukwon Yun, Jie Peng, Ruichen Zhang, Bhavya Kailkhura, Jiekun Yang, Tianlong Chen,
- Abstract要約: マルチオミクスデータから推定されるマルチスケール遺伝子制御ネットワーク(GRN)をRNA基盤モデルトレーニングに統合する新しいフレームワークを提案する。
GRNFormerは、最先端(SoTA)ベースラインに対して一貫した改善を実現している。
- 参考スコア(独自算出の注目度): 39.58414436685698
- License:
- Abstract: Foundation models for single-cell RNA sequencing (scRNA-seq) have shown promising capabilities in capturing gene expression patterns. However, current approaches face critical limitations: they ignore biological prior knowledge encoded in gene regulatory relationships and fail to leverage multi-omics signals that could provide complementary regulatory insights. In this paper, we propose GRNFormer, a new framework that systematically integrates multi-scale Gene Regulatory Networks (GRNs) inferred from multi-omics data into RNA foundation model training. Our framework introduces two key innovations. First, we introduce a pipeline for constructing hierarchical GRNs that capture regulatory relationships at both cell-type-specific and cell-specific resolutions. Second, we design a structure-aware integration framework that addresses the information asymmetry in GRNs through two technical advances: (1) A graph topological adapter using multi-head cross-attention to weight regulatory relationships dynamically, and (2) a novel edge perturbation strategy that perturb GRNs with biologically-informed co-expression links to augment graph neural network training. Comprehensive experiments have been conducted on three representative downstream tasks across multiple model architectures to demonstrate the effectiveness of GRNFormer. It achieves consistent improvements over state-of-the-art (SoTA) baselines: $3.6\%$ increase in drug response prediction correlation, $9.6\%$ improvement in single-cell drug classification AUC, and $1.1\%$ average gain in gene perturbation prediction accuracy.
- Abstract(参考訳): 単一細胞RNAシークエンシング(scRNA-seq)の基礎モデルは、遺伝子発現パターンを捉える上で有望な能力を示している。
しかし、現在のアプローチは、遺伝子規制関係に符号化された生物学的な事前知識を無視し、補完的な規制上の洞察を与える可能性のあるマルチオミクス信号の活用に失敗する、という致命的な制限に直面している。
本稿では,マルチオミクスデータから推定されるマルチスケール遺伝子制御ネットワーク(GRN)をRNA基盤モデルトレーニングに体系的に統合する新しいフレームワークであるGRNFormerを提案する。
私たちのフレームワークには2つの重要なイノベーションがあります。
まず, 階層的なGRNを構築するパイプラインを導入し, セルタイプとセル固有の解像度の両方で, 規制関係を捉える。
第2に,GRNにおける情報非対称性に対処する構造対応統合フレームワークを,(1)多頭部交叉アテンションを用いたグラフトポロジカルアダプタを動的に重み規制関係に利用し,(2)GRNを生物学的にインフォームドされた共表現リンクと拡張グラフニューラルネットワークトレーニングに誘惑する新たなエッジ摂動戦略を設計する。
GRNFormerの有効性を実証するために、複数のモデルアーキテクチャにわたる3つの代表的な下流タスクについて総合的な実験を行った。
最新技術(SoTA)ベースラインよりも一貫した改善が達成されており、薬物反応予測の相関が$3.6\%、単細胞薬物分類のAUCが$9.6\%、遺伝子摂動予測の精度が$1.1\%である。
関連論文リスト
- Analysis of Gene Regulatory Networks from Gene Expression Using Graph Neural Networks [0.4369058206183195]
本研究では、遺伝子制御ネットワーク(GRN)のようなグラフ構造化データをモデリングするための強力なアプローチであるグラフニューラルネットワーク(GNN)の利用について検討する。
規制相互作用を正確に予測し、キーレギュレータをピンポイントするモデルの有効性は、高度な注意機構に起因している。
GNNのGRN研究への統合は、パーソナライズド医療、薬物発見、生物学的システムの把握における先駆的な発展を目標としている。
論文 参考訳(メタデータ) (2024-09-20T17:16:14Z) - Gene Regulatory Network Inference from Pre-trained Single-Cell Transcriptomics Transformer with Joint Graph Learning [10.44434676119443]
単一細胞RNAシークエンシング(scRNA-seq)データから遺伝子制御ネットワーク(GRN)を推定することは複雑である。
本研究では,単一セルBERTを用いた事前学習型トランスモデル(scBERT)を活用することで,この問題に対処する。
本稿では,単一セル言語モデルによって学習されたリッチな文脈表現と,GRNで符号化された構造化知識を組み合わせた,新しい共同グラフ学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-25T16:42:08Z) - Inference of dynamical gene regulatory networks from single-cell data
with physics informed neural networks [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いて,予測的,動的 GRN のパラメータを推定する方法について述べる。
具体的には, 分岐挙動を示すGRNについて検討し, 細胞分化をモデル化する。
論文 参考訳(メタデータ) (2024-01-14T21:43:10Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
グラフニューラルネットワーク(GNN)は、セルタイプの自動分類に広く利用されている。
scBiGNNは2つのGNNモジュールから構成され、細胞型を識別する。
scBiGNNは、scRNA-seqデータから細胞型分類のための様々な方法より優れている。
論文 参考訳(メタデータ) (2023-12-16T03:54:26Z) - Causal Inference in Gene Regulatory Networks with GFlowNet: Towards
Scalability in Large Systems [87.45270862120866]
我々は、GRNにおける因果構造学習を強化する新しいフレームワークとしてSwift-DynGFNを紹介した。
具体的には、Swift-DynGFNは、並列化を高め、計算コストを下げるために、遺伝子的に独立性を利用する。
論文 参考訳(メタデータ) (2023-10-05T14:59:19Z) - Stability Analysis of Non-Linear Classifiers using Gene Regulatory
Neural Network for Biological AI [2.0755366440393743]
二重層転写翻訳化学反応モデルを用いた遺伝子パーセプトロンの数学的モデルを構築した。
我々は全接続GRNNサブネットワーク内の各遺伝子パーセプトロンの安定性解析を行い、時間的および安定した濃度出力を決定する。
論文 参考訳(メタデータ) (2023-09-14T21:37:38Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
遺伝子調節ネットワーク(GRN)は、遺伝子発現と細胞機能を制御する遺伝子とその産物間の相互作用を記述する。
既存の方法は、チャレンジ(1)、ダイナミックスから循環構造を識別すること、あるいはチャレンジ(2)、DAGよりも複雑なベイズ後部を学習することに焦点を当てるが、両方ではない。
本稿では、RNAベロシティ技術を用いて遺伝子発現の「速度」を推定できるという事実を活用し、両方の課題に対処するアプローチを開発する。
論文 参考訳(メタデータ) (2023-02-08T16:36:40Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Netは、DBG構造化システムにおけるGranger因果推論のためのラタグメッセージパッシングを備えたグラフニューラルネットワークに基づくフレームワークである。
我々の応用は、特定の遺伝子の調節を仲介するゲノム座を同定する単一セルマルチモーダルデータの解析である。
論文 参考訳(メタデータ) (2022-10-18T21:15:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。