論文の概要: Gene Regulatory Network Inference from Pre-trained Single-Cell Transcriptomics Transformer with Joint Graph Learning
- arxiv url: http://arxiv.org/abs/2407.18181v1
- Date: Thu, 25 Jul 2024 16:42:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:19:20.758504
- Title: Gene Regulatory Network Inference from Pre-trained Single-Cell Transcriptomics Transformer with Joint Graph Learning
- Title(参考訳): 共同グラフ学習を用いた単セルトランスクリプトーム変換器の遺伝子制御ネットワーク推定
- Authors: Sindhura Kommu, Yizhi Wang, Yue Wang, Xuan Wang,
- Abstract要約: 単一細胞RNAシークエンシング(scRNA-seq)データから遺伝子制御ネットワーク(GRN)を推定することは複雑である。
本研究では,単一セルBERTを用いた事前学習型トランスモデル(scBERT)を活用することで,この問題に対処する。
本稿では,単一セル言語モデルによって学習されたリッチな文脈表現と,GRNで符号化された構造化知識を組み合わせた,新しい共同グラフ学習手法を提案する。
- 参考スコア(独自算出の注目度): 10.44434676119443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inferring gene regulatory networks (GRNs) from single-cell RNA sequencing (scRNA-seq) data is a complex challenge that requires capturing the intricate relationships between genes and their regulatory interactions. In this study, we tackle this challenge by leveraging the single-cell BERT-based pre-trained transformer model (scBERT), trained on extensive unlabeled scRNA-seq data, to augment structured biological knowledge from existing GRNs. We introduce a novel joint graph learning approach that combines the rich contextual representations learned by pre-trained single-cell language models with the structured knowledge encoded in GRNs using graph neural networks (GNNs). By integrating these two modalities, our approach effectively reasons over boththe gene expression level constraints provided by the scRNA-seq data and the structured biological knowledge inherent in GRNs. We evaluate our method on human cell benchmark datasets from the BEELINE study with cell type-specific ground truth networks. The results demonstrate superior performance over current state-of-the-art baselines, offering a deeper understanding of cellular regulatory mechanisms.
- Abstract(参考訳): 単一細胞RNAシークエンシング(scRNA-seq)データから遺伝子制御ネットワーク(GRN)を推定することは、遺伝子とそれらの制御相互作用の間の複雑な関係を捉えなければならない複雑な課題である。
本研究では,単一セルBERTをベースとした事前学習型トランスフォーマモデル(scBERT)を用いて,既存のGRNから構造化された生物学的知識を増強する。
本稿では,事前学習した単一セル言語モデルから学習した豊富な文脈表現と,グラフニューラルネットワーク(GNN)を用いてGRNに符号化された構造化知識を組み合わせた,新しい共同グラフ学習手法を提案する。
これらの2つのモダリティを統合することにより、cRNA-seqデータによって提供される遺伝子発現レベルの制約と、GRNに固有の構造的生物学的知識の両方を効果的に原因付けることができる。
本手法は,BEELINEによる細胞型特異的な地層真理ネットワークを用いたヒト細胞ベンチマークデータセットを用いて評価する。
その結果、現在の最先端ベースラインよりも優れた性能を示し、細胞制御機構のより深い理解を提供することができた。
関連論文リスト
- Analysis of Gene Regulatory Networks from Gene Expression Using Graph Neural Networks [0.4369058206183195]
本研究では、遺伝子制御ネットワーク(GRN)のようなグラフ構造化データをモデリングするための強力なアプローチであるグラフニューラルネットワーク(GNN)の利用について検討する。
規制相互作用を正確に予測し、キーレギュレータをピンポイントするモデルの有効性は、高度な注意機構に起因している。
GNNのGRN研究への統合は、パーソナライズド医療、薬物発見、生物学的システムの把握における先駆的な発展を目標としている。
論文 参考訳(メタデータ) (2024-09-20T17:16:14Z) - scASDC: Attention Enhanced Structural Deep Clustering for Single-cell RNA-seq Data [5.234149080137045]
scRNA-seqデータに固有の高空間性および複雑なノイズパターンは、従来のクラスタリング手法において重要な課題である。
本稿では,深層クラスタリング手法であるアテンション強化構造深層埋め込みグラフクラスタリング(scASDC)を提案する。
scASDCはクラスタリングの精度と堅牢性を改善するために、複数の高度なモジュールを統合している。
論文 参考訳(メタデータ) (2024-08-09T09:10:36Z) - Inference of dynamical gene regulatory networks from single-cell data
with physics informed neural networks [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いて,予測的,動的 GRN のパラメータを推定する方法について述べる。
具体的には, 分岐挙動を示すGRNについて検討し, 細胞分化をモデル化する。
論文 参考訳(メタデータ) (2024-01-14T21:43:10Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
グラフニューラルネットワーク(GNN)は、セルタイプの自動分類に広く利用されている。
scBiGNNは2つのGNNモジュールから構成され、細胞型を識別する。
scBiGNNは、scRNA-seqデータから細胞型分類のための様々な方法より優れている。
論文 参考訳(メタデータ) (2023-12-16T03:54:26Z) - Causal Inference in Gene Regulatory Networks with GFlowNet: Towards
Scalability in Large Systems [87.45270862120866]
我々は、GRNにおける因果構造学習を強化する新しいフレームワークとしてSwift-DynGFNを紹介した。
具体的には、Swift-DynGFNは、並列化を高め、計算コストを下げるために、遺伝子的に独立性を利用する。
論文 参考訳(メタデータ) (2023-10-05T14:59:19Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
我々はこれらの課題に対処し、脳内のscRNA-seq解析の精度を高めるために設計された基礎モデルであるscHyenaを紹介する。
scHyenaは、線形適応層、遺伝子埋め込みによる位置エンコーディング、および双方向ハイエナ演算子を備えている。
これにより、生データから情報を失うことなく、全長の scRNA-seq データを処理できる。
論文 参考訳(メタデータ) (2023-10-04T10:30:08Z) - Stability Analysis of Non-Linear Classifiers using Gene Regulatory
Neural Network for Biological AI [2.0755366440393743]
二重層転写翻訳化学反応モデルを用いた遺伝子パーセプトロンの数学的モデルを構築した。
我々は全接続GRNNサブネットワーク内の各遺伝子パーセプトロンの安定性解析を行い、時間的および安定した濃度出力を決定する。
論文 参考訳(メタデータ) (2023-09-14T21:37:38Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
遺伝子調節ネットワーク(GRN)は、遺伝子発現と細胞機能を制御する遺伝子とその産物間の相互作用を記述する。
既存の方法は、チャレンジ(1)、ダイナミックスから循環構造を識別すること、あるいはチャレンジ(2)、DAGよりも複雑なベイズ後部を学習することに焦点を当てるが、両方ではない。
本稿では、RNAベロシティ技術を用いて遺伝子発現の「速度」を推定できるという事実を活用し、両方の課題に対処するアプローチを開発する。
論文 参考訳(メタデータ) (2023-02-08T16:36:40Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Netは、DBG構造化システムにおけるGranger因果推論のためのラタグメッセージパッシングを備えたグラフニューラルネットワークに基づくフレームワークである。
我々の応用は、特定の遺伝子の調節を仲介するゲノム座を同定する単一セルマルチモーダルデータの解析である。
論文 参考訳(メタデータ) (2022-10-18T21:15:10Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。