論文の概要: Student-AI Interaction in an LLM-Empowered Learning Environment: A Cluster Analysis of Engagement Profiles
- arxiv url: http://arxiv.org/abs/2503.01694v2
- Date: Sun, 05 Oct 2025 14:55:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 19:16:49.345233
- Title: Student-AI Interaction in an LLM-Empowered Learning Environment: A Cluster Analysis of Engagement Profiles
- Title(参考訳): LLMを活用した学習環境における学生とAIのインタラクション--エンゲージメントプロファイルのクラスタ分析
- Authors: Zhanxin Hao, Jianxiao Jiang, Jifan Yu, Zhiyuan Liu, Yu Zhang,
- Abstract要約: 本研究では,多エージェント LLM を用いた学習環境における多様な学習者のプロファイルについて検討した。
学生は様々な行動、認知、感情的なエンゲージメントの傾向を示す。
- 参考スコア(独自算出の注目度): 28.794946431719392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating Large Language Models (LLMs) into educational practice enables personalized learning by accommodating diverse learner behaviors. This study explored diverse learner profiles within a multi-agent, LLM-empowered learning environment. Data was collected from 312 undergraduate students at a university in China as they participated in a six-module course. Based on hierarchical cluster analyses of system profiles and student-AI interactive dialogues, we found that students exhibit varied behavioral, cognitive, and emotional engagement tendencies. This analysis allowed us to identify two types of dropouts (early dropouts and stagnating interactors) and three completer profiles (active questioners, responsive navigators, and lurkers). The results showed that high levels of interaction do not always equate to productive learning and vice versa. Prior knowledge significantly influenced interaction patterns and short-term learning benefits. Further analysis of the human-AI dialogues revealed that some students actively engaged in knowledge construction, while others displayed a high frequency of regulatory behaviors. Notably, both groups of students achieved comparable learning gains, demonstrating the effectiveness of the multi-agent learning environment in supporting personalized learning. These results underscore the complex and multifaceted nature of engagement in human-AI collaborative learning and provide practical implications for the design of adaptive educational systems.
- Abstract(参考訳): 大規模言語モデル(LLM)を教育実践に統合することで、多様な学習者行動の調整によるパーソナライズされた学習が可能になる。
本研究では,多エージェント LLM を用いた学習環境における多様な学習者のプロファイルについて検討した。
中国にある大学の学部生312人が6モジュールコースに参加した際に収集したデータ。
システムプロファイルと学生とAIの対話の階層的クラスタ分析から,学生は行動,認知,感情的エンゲージメントの傾向が変化することがわかった。
この分析により、2種類のドロップアウト(早期のドロップアウトと段階的な対話)と3つの完全化プロファイル(アクティブな質問者、レスポンシブナビゲータ、ルーカー)を識別することができた。
その結果,高レベルの相互作用が生産的学習と同等であるとは限らないことがわかった。
先行知識は、相互作用パターンと短期学習の利点に大きく影響した。
人間とAIの対話をさらに分析した結果、一部の学生は知識構築に積極的に取り組んでおり、他の学生は規制行動の頻度が高いことがわかった。
特に,2つの学習グループが,個人化学習支援におけるマルチエージェント学習環境の有効性を実証し,同等の学習効果を得た。
これらの結果は、人間とAIの協調学習における複雑で多面的なエンゲージメントの性質を強調し、適応型教育システムの設計に実践的な意味を与える。
関連論文リスト
- Unveiling the Learning Mind of Language Models: A Cognitive Framework and Empirical Study [50.065744358362345]
大規模言語モデル(LLM)は、数学、コーディング、推論といったタスクにまたがる印象的な機能を示している。
しかし、彼らの学習能力は、動的環境に適応し、新しい知識を得るのに不可欠であり、まだ過小評価されていない。
論文 参考訳(メタデータ) (2025-06-16T13:24:50Z) - Data Science Students Perspectives on Learning Analytics: An Application of Human-Led and LLM Content Analysis [2.4561590439700076]
この研究は、イギリスの大学における一連の取り組みの一環であり、分析に関する学生の視点を深く理解することを目的としている。
Open University Learning Analyticsデータセットを調査した大学院生による協調的なデータ処理について検討する。
論文 参考訳(メタデータ) (2025-01-22T17:16:01Z) - Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - RIGL: A Unified Reciprocal Approach for Tracing the Independent and Group Learning Processes [22.379764500005503]
個人レベルとグループレベルの両方で知識状態をトレースする統合相互モデルであるRIGLを提案する。
本稿では,学生と集団の相互作用を同時にモデル化するための時間フレーム対応の相互埋め込みモジュールを提案する。
動的グラフモデリングと時間的自己注意機構を組み合わせた関係誘導型時間的注意ネットワークを設計する。
論文 参考訳(メタデータ) (2024-06-18T10:16:18Z) - A First Step in Using Machine Learning Methods to Enhance Interaction Analysis for Embodied Learning Environments [4.349901731099916]
本研究は,機械学習とマルチモーダル学習分析を用いて,研究者のタスクを簡略化することを目的とする。
本研究は,学生の状態,行動,視線,感情,運動をタイムライン上で視覚的に表現できる可能性を決定するための最初のケーススタディである。
このタイムラインにより,マルチモーダル・インタラクション分析によって同定された臨界学習モーメントのアライメントを調べることができる。
論文 参考訳(メタデータ) (2024-05-10T02:40:24Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Harnessing Transparent Learning Analytics for Individualized Support
through Auto-detection of Engagement in Face-to-Face Collaborative Learning [3.0184625301151833]
本稿では,共同作業における学生の個人参加を自動的に検出する透過的アプローチを提案する。
提案手法は,学生の個人的関与を反映し,異なる協調学習課題を持つ生徒を識別する指標として利用することができる。
論文 参考訳(メタデータ) (2024-01-03T12:20:28Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - An Artificial Intelligence driven Learning Analytics Method to Examine
the Collaborative Problem solving Process from a Complex Adaptive Systems
Perspective [0.7450115015150832]
協調問題解決(CPS)は、学生グループが学習タスクを完了し、知識を構築し、問題を解決することを可能にする。
従来の研究は、CPSの複雑さ、多モード性、ダイナミクス、シナジーなどを調べることの重要性を論じてきた。
本研究は、オンラインインタラクション設定におけるCPSの性質を理解するために、マルチモーダルプロセスとパフォーマンスデータを収集した。
論文 参考訳(メタデータ) (2022-10-28T11:13:05Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Social Interactions Clustering MOOC Students: An Exploratory Study [57.822523354358665]
コメントは、学生が学生とどのように交流したか、例えば学生のコメントが同僚から返信を受けたかに基づいて分類された。
統計的モデリングと機械学習はコメント分類の分析に用いられ、3つの強く安定したクラスタが生成される。
論文 参考訳(メタデータ) (2020-08-10T09:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。