A Review of Artificial Intelligence Impacting Statistical Process Monitoring and Future Directions
- URL: http://arxiv.org/abs/2503.01858v1
- Date: Sun, 23 Feb 2025 04:19:58 GMT
- Title: A Review of Artificial Intelligence Impacting Statistical Process Monitoring and Future Directions
- Authors: Shing I Chang, Parviz Ghafariasl,
- Abstract summary: Recent advances in Artificial Intelligence (AI) have reinvigorated the imagination of adopting AI for statistical process monitoring (SPM) applications.<n>The ultimate objective is to transform statistical process monitoring (SPM) into smart process control (SMPC), where corrective actions are autonomously implemented to either prevent quality issues or restore process performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It has been 100 years since statistical process control (SPC) or statistical process monitoring (SPM) was first introduced for production processes and later applied to service, healthcare, and other industries. The techniques applied to SPM applications are mostly statistically oriented. Recent advances in Artificial Intelligence (AI) have reinvigorated the imagination of adopting AI for SPM applications. This manuscript begins with a concise review of the historical development of the statistically based SPM methods. Next, this manuscript explores AI and Machine Learning (ML) algorithms and methods applied in various SPM applications, addressing quality characteristics of univariate, multivariate, profile, and image. These AI methods can be classified into the following categories: classification, pattern recognition, time series applications, and generative AI. Specifically, different kinds of neural networks, such as artificial neural networks (ANN), convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial networks (GAN), are among the most implemented AI methods impacting SPM. Finally, this manuscript outlines a couple of future directions that harness the potential of the Large Multimodal Model (LMM) for advancing SPM research and applications in complex systems. The ultimate objective is to transform statistical process monitoring (SPM) into smart process control (SMPC), where corrective actions are autonomously implemented to either prevent quality issues or restore process performance.
Related papers
- Neural Networks for on-chip Model Predictive Control: a Method to Build Optimized Training Datasets and its application to Type-1 Diabetes [0.0]
Training Neural Networks (NNs) to behave as Model Predictive Control (MPC) algorithms is an effective way to implement them in constrained embedded devices.
We introduce the concept of Optimally-Sampled datasets (OSDs) as ideal training sets and present an efficient algorithm for generating them.
We demonstrate the effectiveness of OSDs by training NNs to replicate the University of Virginia's MPC algorithm for automated insulin delivery in Type-1 Diabetes.
arXiv Detail & Related papers (2025-04-15T16:25:06Z) - Enabling Efficient Processing of Spiking Neural Networks with On-Chip Learning on Commodity Neuromorphic Processors for Edge AI Systems [5.343921650701002]
spiking neural network (SNN) algorithms on neuromorphic processors offer ultra-low power/energy AI computation.
We propose a design methodology to enable efficient SNN processing on commodity neuromorphic processors.
arXiv Detail & Related papers (2025-04-01T16:52:03Z) - MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
We introduce Meta MLGym and MLGym-Bench, a new framework and benchmark for evaluating and developing large language models on AI research tasks.
This is the first Gym environment for machine learning (ML) tasks, enabling research on reinforcement learning (RL) algorithms for training such agents.
We evaluate a number of frontier large language models (LLMs) on our benchmarks such as Claude-3.5-Sonnet, Llama-3.1 405B, GPT-4o, o1-preview, and Gemini-1.5 Pro.
arXiv Detail & Related papers (2025-02-20T12:28:23Z) - AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - Impacts of Data Preprocessing and Hyperparameter Optimization on the Performance of Machine Learning Models Applied to Intrusion Detection Systems [0.8388591755871736]
Intrusion Detection Systems (IDS) have been continuously improved.
Many of them incorporate machine learning (ML) techniques to identify threats.
This article aims to present a study that fills this research gap.
arXiv Detail & Related papers (2024-07-15T14:30:25Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Generating synthetic multi-dimensional molecular-mediator time series
data for artificial intelligence-based disease trajectory forecasting and
drug development digital twins: Considerations [0.0]
The use of synthetic data is recognized as a crucial step in the development of neural network-based Artificial Intelligence (AI) systems.
Insufficiency of statistical and data-centric machine learning means of generating this type of synthetic data is due to a combination of factors.
The generation of synthetic data that accounts for the identified factors of multi-dimensional time series data is an essential capability for the development of mediator-biomarker based AI forecasting systems.
arXiv Detail & Related papers (2023-03-16T03:13:53Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Concurrent Neural Tree and Data Preprocessing AutoML for Image
Classification [0.5735035463793008]
Current state-of-the-art (SOTA) methods do not include traditional methods for manipulating input data as part of the algorithmic search space.
We adapt the Evolutionary Multi-objective Algorithm Design Engine (EMADE), a multi-objective evolutionary search framework for traditional machine learning methods, to perform neural architecture search.
We show that including these methods as part of the search space shows potential to provide benefits to performance on the CIFAR-10 image classification benchmark dataset.
arXiv Detail & Related papers (2022-05-25T20:03:09Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.