Evaluating System 1 vs. 2 Reasoning Approaches for Zero-Shot Time Series Forecasting: A Benchmark and Insights
- URL: http://arxiv.org/abs/2503.01895v2
- Date: Fri, 14 Mar 2025 00:16:53 GMT
- Title: Evaluating System 1 vs. 2 Reasoning Approaches for Zero-Shot Time Series Forecasting: A Benchmark and Insights
- Authors: Haoxin Liu, Zhiyuan Zhao, Shiduo Li, B. Aditya Prakash,
- Abstract summary: Self-consistency emerges as the most effective test-time reasoning strategy.<n>Group-relative policy optimization emerges as a more suitable approach for incentivizing reasoning ability during post-training.
- Score: 21.663682332422216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning ability is crucial for solving challenging tasks. With the advancement of foundation models, such as the emergence of large language models (LLMs), a wide range of reasoning strategies has been proposed, including test-time enhancements, such as Chain-ofThought, and post-training optimizations, as used in DeepSeek-R1. While these reasoning strategies have demonstrated effectiveness across various challenging language or vision tasks, their applicability and impact on time-series forecasting (TSF), particularly the challenging zero-shot TSF, remain largely unexplored. In particular, it is unclear whether zero-shot TSF benefits from reasoning and, if so, what types of reasoning strategies are most effective. To bridge this gap, we propose ReC4TS, the first benchmark that systematically evaluates the effectiveness of popular reasoning strategies when applied to zero-shot TSF tasks. ReC4TS conducts comprehensive evaluations across datasets spanning eight domains, covering both unimodal and multimodal with short-term and longterm forecasting tasks. More importantly, ReC4TS provides key insights: (1) Self-consistency emerges as the most effective test-time reasoning strategy; (2) Group-relative policy optimization emerges as a more suitable approach for incentivizing reasoning ability during post-training; (3) Multimodal TSF benefits more from reasoning strategies compared to unimodal TSF. Beyond these insights, ReC4TS establishes two pioneering starting blocks to support future zero-shot TSF reasoning research: (1) A novel dataset, TimeThinking, containing forecasting samples annotated with reasoning trajectories from multiple advanced LLMs, and (2) A new and simple test-time scaling-law validated on foundational TSF models enabled by self-consistency reasoning strategy. All data and code are publicly accessible at: https://github.com/AdityaLab/OpenTimeR
Related papers
- a1: Steep Test-time Scaling Law via Environment Augmented Generation [45.19240207975418]
Environment Augmented Generation (EAG) is a framework that enhances large language models' reasoning through real-time environmental feedback.
EAG enables deliberate backtracking and strategic replanning through tight integration of execution feedback and branching exploration.
A1-32B model achieves state-of-the-art performance among similar-sized models across all benchmarks.
arXiv Detail & Related papers (2025-04-20T12:55:59Z) - SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM [18.275547804539016]
Two-Staged history-Resampling Policy optimization surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks.
We introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples.
arXiv Detail & Related papers (2025-04-19T13:06:03Z) - R-TPT: Improving Adversarial Robustness of Vision-Language Models through Test-Time Prompt Tuning [97.49610356913874]
We propose a robust test-time prompt tuning (R-TPT) for vision-language models (VLMs)
R-TPT mitigates the impact of adversarial attacks during the inference stage.
We introduce a plug-and-play reliability-based weighted ensembling strategy to strengthen the defense.
arXiv Detail & Related papers (2025-04-15T13:49:31Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.
Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights [49.42133807824413]
We examine the reasoning and planning capabilities of large language models (LLMs) in solving complex tasks.
Recent advances in inference-time techniques demonstrate the potential to enhance LLM reasoning without additional training.
OpenAI's o1 model shows promising performance through its novel use of multi-step reasoning and verification.
arXiv Detail & Related papers (2025-02-18T04:11:29Z) - Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving [55.895917967408586]
Existing approaches to mathematical reasoning with large language models rely on Chain-of-Thought (CoT) for generalizability or Tool-Integrated Reasoning (TIR) for precise computation.<n>We propose TATA (Teaching LLMs According to Their Aptitude), an adaptive framework that enables LLMs to personalize their reasoning strategy spontaneously.
arXiv Detail & Related papers (2025-02-17T16:56:23Z) - Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought [61.588465852846646]
Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs)
In this work, we introduce a novel reasoning boundary framework (RBF) to address these challenges.
arXiv Detail & Related papers (2024-10-08T05:26:28Z) - Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through Strategy Elicitation [16.350747493026432]
The Chain-of-Thought (CoT) paradigm has emerged as a critical approach for enhancing the reasoning capabilities of large language models (LLMs)
We propose the textbfStrategic Chain-of-Thought (SCoT) to refine LLM performance by integrating strategic knowledge prior to generating intermediate reasoning steps.
SCoT employs a two-stage approach within a single prompt: first eliciting an effective problem-solving strategy, which is then used to guide the generation of high-quality CoT paths and final answers.
arXiv Detail & Related papers (2024-09-05T06:28:05Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Break the Chain: Large Language Models Can be Shortcut Reasoners [18.047917626825548]
Chain-of-Thought (CoT) reasoning utilize complex modules but are hampered by high token consumption, limited applicability, and challenges in thinking.
This paper conducts a critical evaluation of CoT prompting, extending beyond arithmetic to include complex logical and commonsense reasoning tasks.
We propose the integration of human-likes and shortcuts into language models (LMs) through "break the chain" strategies.
arXiv Detail & Related papers (2024-06-04T14:02:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.