Can Slow-thinking LLMs Reason Over Time? Empirical Studies in Time Series Forecasting
- URL: http://arxiv.org/abs/2505.24511v2
- Date: Tue, 10 Jun 2025 13:09:36 GMT
- Title: Can Slow-thinking LLMs Reason Over Time? Empirical Studies in Time Series Forecasting
- Authors: Jiahao Wang, Mingyue Cheng, Qi Liu,
- Abstract summary: Time series forecasting (TSF) is a fundamental and widely studied task, spanning methods from classical statistical approaches to modern deep learning and multimodal language modeling.<n>Meanwhile, emerging slow-thinking LLMs have demonstrated impressive multi-step reasoning capabilities across diverse domains.<n>This motivates a key question: can slow-thinking LLMs effectively reason over temporal patterns to support time series forecasting, even in zero-shot manner?
- Score: 17.73769436497384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting (TSF) is a fundamental and widely studied task, spanning methods from classical statistical approaches to modern deep learning and multimodal language modeling. Despite their effectiveness, these methods often follow a fast thinking paradigm emphasizing pattern extraction and direct value mapping, while overlooking explicit reasoning over temporal dynamics and contextual dependencies. Meanwhile, emerging slow-thinking LLMs (e.g., ChatGPT-o1, DeepSeek-R1) have demonstrated impressive multi-step reasoning capabilities across diverse domains, suggesting a new opportunity for reframing TSF as a structured reasoning task. This motivates a key question: can slow-thinking LLMs effectively reason over temporal patterns to support time series forecasting, even in zero-shot manner? To investigate this, in this paper, we propose TimeReasoner, an extensive empirical study that formulates TSF as a conditional reasoning task. We design a series of prompting strategies to elicit inference-time reasoning from pretrained slow-thinking LLMs and evaluate their performance across diverse TSF benchmarks. Our findings reveal that slow-thinking LLMs exhibit non-trivial zero-shot forecasting capabilities, especially in capturing high-level trends and contextual shifts. While preliminary, our study surfaces important insights into the reasoning behaviors of LLMs in temporal domains highlighting both their potential and limitations. We hope this work catalyzes further research into reasoning-based forecasting paradigms and paves the way toward more interpretable and generalizable TSF frameworks.
Related papers
- Time Series Forecasting as Reasoning: A Slow-Thinking Approach with Reinforced LLMs [12.295608604703117]
Time-R1 is a two-stage reinforcement fine-tuning framework designed to enhance multi-step reasoning ability of LLMs for time series forecasting.<n>Specifically, the first stage conducts supervised fine-tuning for warmup adaptation, while the second stage employs reinforcement learning to improve the model's generalization ability.<n> Experiments demonstrate that Time-R1 significantly improves forecast performance across diverse datasets.
arXiv Detail & Related papers (2025-06-12T12:15:50Z) - Enhancing LLM Reasoning for Time Series Classification by Tailored Thinking and Fused Decision [8.256998757769322]
ReasonTSC is a framework designed to leverage LLM reasoning for time series classification.<n>It steers the model to think over the essential characteristics of time series data.<n>It integrates predictions and confidence scores from plug-in classifiers, e.g., domain-specific time series models, as in-context examples.
arXiv Detail & Related papers (2025-06-01T03:15:54Z) - Investigating and Enhancing the Robustness of Large Multimodal Models Against Temporal Inconsistency [59.05753942719665]
We propose a novel temporal robustness benchmark (TemRobBench) to assess the robustness of models.<n>We evaluate 16 mainstream LMMs and find that they exhibit over-reliance on prior knowledge and textual context in adversarial environments.<n>We design panoramic direct preference optimization (PanoDPO) to encourage LMMs to incorporate both visual and linguistic feature preferences simultaneously.
arXiv Detail & Related papers (2025-05-20T14:18:56Z) - Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLM [11.181783720439563]
Large Language Models (LLMs) display sophisticated reasoning abilities via extended Chain-of-Thought (CoT) generation.<n>RLMs often demonstrate counterintuitive and unstable behaviors, such as performance degradation under few-shot prompting.<n>We introduce a unified graph-based analytical framework for better modeling the reasoning processes of RLMs.
arXiv Detail & Related papers (2025-05-20T03:54:57Z) - Learning to Reason Over Time: Timeline Self-Reflection for Improved Temporal Reasoning in Language Models [21.579319926212296]
Large Language Models (LLMs) have emerged as powerful tools for generating coherent text, understanding context, and performing reasoning tasks.<n>They struggle with temporal reasoning, which requires processing time-related information such as event sequencing, durations, and inter-temporal relationships.<n>We introduce TISER, a novel framework that enhances the temporal reasoning abilities of LLMs through a multi-stage process that combines timeline construction with iterative self-reflection.
arXiv Detail & Related papers (2025-04-07T16:51:45Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.<n>Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.<n>We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - Position: Empowering Time Series Reasoning with Multimodal LLMs [49.73647759532127]
We argue that multimodal language models (MLLMs) can enable more powerful and flexible reasoning for time series analysis.<n>We call on researchers and practitioners to leverage this potential by developing strategies that prioritize trust, interpretability, and robust reasoning in MLLMs.
arXiv Detail & Related papers (2025-02-03T16:10:48Z) - Enhancing Temporal Understanding in LLMs for Semi-structured Tables [50.59009084277447]
We conduct a comprehensive analysis of temporal datasets to pinpoint the specific limitations of large language models (LLMs)
Our investigation leads to enhancements in TempTabQA, a dataset specifically designed for temporal temporal question answering.
We introduce a novel approach, C.L.E.A.R. to strengthen LLM capabilities in this domain.
arXiv Detail & Related papers (2024-07-22T20:13:10Z) - Living in the Moment: Can Large Language Models Grasp Co-Temporal Reasoning? [70.19200858203388]
Temporal reasoning is fundamental for large language models to comprehend the world.
CoTempQA is a benchmark containing four co-temporal scenarios.
Our experiments reveal a significant gap between the performance of current LLMs and human-level reasoning.
arXiv Detail & Related papers (2024-06-13T12:56:21Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
We propose a novel Cross-Modal LLM Fine-Tuning (CALF) framework for MTSF.<n>To reduce the distribution discrepancy, we develop the cross-modal match module.<n>CALF establishes state-of-the-art performance for both long-term and short-term forecasting tasks.
arXiv Detail & Related papers (2024-03-12T04:04:38Z) - TRAM: Benchmarking Temporal Reasoning for Large Language Models [12.112914393948415]
We introduce TRAM, a temporal reasoning benchmark composed of ten datasets.
We evaluate popular language models like GPT-4 and Llama2 in zero-shot and few-shot scenarios.
Our findings indicate that the best-performing model lags significantly behind human performance.
arXiv Detail & Related papers (2023-10-02T00:59:07Z) - Reason for Future, Act for Now: A Principled Framework for Autonomous
LLM Agents with Provable Sample Efficiency [53.8779374188643]
We propose a principled framework with provable regret guarantees to orchestrate reasoning and acting.
Specifically, we design a prompt template for reasoning that learns from the memory buffer and plans a future trajectory over a long horizon.
At each step, the LLM agent takes the initial action of the planned trajectory ("act for now"), stores the collected feedback in the memory buffer, and reinvokes the reasoning routine to replan the future trajectory from the new state.
arXiv Detail & Related papers (2023-09-29T16:36:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.