Continual Learning-Aided Super-Resolution Scheme for Channel Reconstruction and Generalization in OFDM Systems
- URL: http://arxiv.org/abs/2503.01897v1
- Date: Fri, 28 Feb 2025 01:31:13 GMT
- Title: Continual Learning-Aided Super-Resolution Scheme for Channel Reconstruction and Generalization in OFDM Systems
- Authors: Jianqiao Chen, Nan Ma, Wenkai Liu, Xiaodong Xu, Ping Zhang,
- Abstract summary: We exploit a novel scheme for efficient OFDM channel estimation where the neural networks for channel reconstruction and generalization are respectively designed.<n>For the former, we propose a dual-attention-aided super-resolution neural network (DA-SRNN) to map the channels at pilot positions to the whole time-frequency channels.<n>For the latter, we introduce continual learning (CL)-aided training strategies to make the neural network adapt to different channel distributions.
- Score: 11.06722464955919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Channel reconstruction and generalization capability are of equal importance for developing channel estimation schemes within deep learning (DL) framework. In this paper, we exploit a novel DL-based scheme for efficient OFDM channel estimation where the neural networks for channel reconstruction and generalization are respectively designed. For the former, we propose a dual-attention-aided super-resolution neural network (DA-SRNN) to map the channels at pilot positions to the whole time-frequency channels. Specifically, the channel-spatial attention mechanism is first introduced to sequentially infer attention maps along two separate dimensions corresponding to two types of underlying channel correlations, and then the lightweight SR module is developed for efficient channel reconstruction. For the latter, we introduce continual learning (CL)-aided training strategies to make the neural network adapt to different channel distributions. Specifically, the elastic weight consolidation (EWC) is introduced as the regularization term in regard to loss function of channel reconstruction, which can constrain the direction and space of updating the important weights of neural networks among different channel distributions. Meanwhile, the corresponding training process is provided in detail. By evaluating under 3rd Generation Partnership Project (3GPP) channel models, numerical results verify the superiority of the proposed channel estimation scheme with significantly improved channel reconstruction and generalization performance over counterparts.
Related papers
- Deep OFDM Channel Estimation: Capturing Frequency Recurrence [10.76835122839777]
We propose a deep-learning-based channel estimation scheme in an OFDM system.
We employ recurrent neural network techniques within a single OFDM slot, thus overcoming the latency and memory constraints.
The proposed SisRafNet delivers superior estimation performance compared to existing deep-learning-based channel estimation techniques.
arXiv Detail & Related papers (2024-01-07T14:13:08Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Learning Based Channel Estimation in High Mobility Communications
Using Bi-RNN Networks [7.310043452300738]
We propose an optimized and robust bi-directional recurrent neural network (Bi-RNN) based channel estimator to accurately estimate the doubly-selective channel.
The developed Bi-GRU estimator significantly outperforms the recently proposed CNN-based estimators in different mobility scenarios.
arXiv Detail & Related papers (2023-04-29T09:20:28Z) - Low Complexity Channel estimation with Neural Network Solutions [1.0499453838486013]
We deploy a general residual convolutional neural network to achieve channel estimation in a downlink scenario.
Compared with other deep learning methods for channel estimation, our results suggest improved mean squared error computation.
arXiv Detail & Related papers (2022-01-24T19:55:10Z) - Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM [0.0]
Deep neural network (DNN) is integrated with spatial modulation-orthogonal frequency division multiplexing (SM-OFDM) technique for end-to-end data detection over Rayleigh fading channel.
This proposed system directly demodulates the received symbols, leaving the channel estimation done only implicitly.
arXiv Detail & Related papers (2021-09-15T10:54:56Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
A novel framework is proposed to perform data-driven air-to-ground (A2G) channel estimation for millimeter wave (mmWave) communications in an unmanned aerial vehicle (UAV) wireless network.
An effective channel estimation approach is developed, allowing each UAV to train a stand-alone channel model via a conditional generative adversarial network (CGAN) along each beamforming direction.
A cooperative framework, based on a distributed CGAN architecture, is developed, allowing each UAV to collaboratively learn the mmWave channel distribution.
arXiv Detail & Related papers (2021-02-02T20:56:46Z) - CAnet: Uplink-aided Downlink Channel Acquisition in FDD Massive MIMO
using Deep Learning [51.72869237847767]
In frequency-division duplexing systems, the downlink channel state information (CSI) acquisition scheme leads to high training and feedback overheads.
We propose an uplink-aided downlink channel acquisition framework using deep learning to reduce these overheads.
arXiv Detail & Related papers (2021-01-12T10:12:28Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.