A General Neural Network Potential for Energetic Materials with C, H, N, and O elements
- URL: http://arxiv.org/abs/2503.01932v1
- Date: Mon, 03 Mar 2025 03:24:59 GMT
- Title: A General Neural Network Potential for Energetic Materials with C, H, N, and O elements
- Authors: Mingjie Wen, Jiahe Han, Wenjuan Li, Xiaoya Chang, Qingzhao Chu, Dongping Chen,
- Abstract summary: High-energy materials (HEMs) are constrained by the prohibitive computational expense and prolonged development cycles.<n>We develop a general neural network potential (NNP) that efficiently predicts the structural, mechanical, and decomposition properties of HEMs.
- Score: 0.9742644628669695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery and optimization of high-energy materials (HEMs) are constrained by the prohibitive computational expense and prolonged development cycles inherent in conventional approaches. In this work, we develop a general neural network potential (NNP) that efficiently predicts the structural, mechanical, and decomposition properties of HEMs composed of C, H, N, and O. Our framework leverages pre-trained NNP models, fine-tuned using transfer learning on energy and force data derived from density functional theory (DFT) calculations. This strategy enables rapid adaptation across 20 different HEM systems while maintaining DFT-level accuracy, significantly reducing computational costs. A key aspect of this work is the ability of NNP model to capture the chemical activity space of HEMs, accurately describe the key atomic interactions and reaction mechanisms during thermal decomposition. The general NNP model has been applied in molecular dynamics (MD) simulations and validated with experimental data for various HEM structures. Results show that the NNP model accurately predicts the structural, mechanical, and decomposition properties of HEMs by effectively describing their chemical activity space. Compared to traditional force fields, it offers superior DFT-level accuracy and generalization across both microscopic and macroscopic properties, reducing the computational and experimental costs. This work provides an efficient strategy for the design and development of HEMs and proposes a promising framework for integrating DFT, machine learning, and experimental methods in materials research. (To facilitate further research and practical applications, we open-source our NNP model on GitHub: https://github.com/MingjieWen/General-NNP-model-for-C-H-N-O-Energetic-Materials.)
Related papers
- Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems [52.19558333652367]
We present finite-range embeddings (FiRE) for accurate large-scale ab-initio electronic structure calculations.
FiRE reduces the complexity of neural-network variational Monte Carlo (NN-VMC) by $sim ntextel$, the number of electrons.
We validate our method's accuracy on various challenging systems, including biochemical compounds and organometallic compounds.
arXiv Detail & Related papers (2025-04-08T14:28:54Z) - Constructing accurate machine-learned potentials and performing highly efficient atomistic simulations to predict structural and thermal properties [6.875235178607604]
We introduce a neuroevolution potential (NEP) trained on a dataset generated from ab initio molecular dynamics (AIMD) simulations.
We calculate the phonon density of states (DOS) and radial distribution function (RDF) using both machine learning potentials.
While the MTP potential offers slightly higher accuracy, the NEP achieves a remarkable 41-fold increase in computational speed.
arXiv Detail & Related papers (2024-11-16T23:16:59Z) - Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
Superionic materials are essential for advancing solid-state batteries, which offer improved energy density and safety.
Conventional computational methods for identifying such materials are resource-intensive and not easily scalable.
We propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - Overcoming the Barrier of Orbital-Free Density Functional Theory for
Molecular Systems Using Deep Learning [46.08497356503155]
Orbital-free density functional theory (OFDFT) is a quantum chemistry formulation that has a lower cost scaling than the prevailing Kohn-Sham DFT.
Here we propose M-OFDFT, an OFDFT approach capable of solving molecular systems using a deep learning functional model.
arXiv Detail & Related papers (2023-09-28T16:33:36Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - PARC: Physics-Aware Recurrent Convolutional Neural Networks to
Assimilate Meso-scale Reactive Mechanics of Energetic Materials [0.0]
We present the Physics-Aware Recurrent Convolutional (PARC) Neural Network, a deep-learning algorithm capable of learning the mesoscale thermo-mechanics of shock-initiated energetic materials (EM)
We demonstrate that visualizing the artificial neurons at PARC can shed light on important aspects of EM thermos-mechanics and provide an additional lens for conceptualizing EM.
arXiv Detail & Related papers (2022-04-04T14:29:35Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
We develop a novel optimal transport-based algorithm termed MROT to enhance their generalization capability for molecular regression problems.
MROT significantly outperforms state-of-the-art models, showing promising potential in accelerating the discovery of new substances.
arXiv Detail & Related papers (2022-02-13T04:56:18Z) - Fast and Sample-Efficient Interatomic Neural Network Potentials for
Molecules and Materials Based on Gaussian Moments [3.1829446824051195]
We present an improved NN architecture based on the previous GM-NN model.
The improved methodology is a pre-requisite for training-heavy such as active learning or learning-on-the-fly.
arXiv Detail & Related papers (2021-09-20T14:23:34Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
Reactive force fields based on physics or machine learning can be used to bridge the gap in time and length scales.
We introduce the Gaussian multi-pole (GMP) featurization scheme that utilizes physically-relevant multi-pole expansions of the electron density around atoms.
We demonstrate that GMP-based models can achieve chemical accuracy for the QM9 dataset, and their accuracy remains reasonable even when extrapolating to new elements.
arXiv Detail & Related papers (2021-02-04T03:11:00Z) - Multi-task learning for electronic structure to predict and explore
molecular potential energy surfaces [39.228041052681526]
We refine the OrbNet model to accurately predict energy, forces, and other response properties for molecules.
The model is end-to-end differentiable due to the derivation of analytic gradients for all electronic structure terms.
It is shown to be transferable across chemical space due to the use of domain-specific features.
arXiv Detail & Related papers (2020-11-05T06:48:46Z) - OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
Atomic-Orbital Features [42.96944345045462]
textscOrbNet is shown to outperform existing methods in terms of learning efficiency and transferability.
For applications to datasets of drug-like molecules, textscOrbNet predicts energies within chemical accuracy of DFT at a computational cost that is thousand-fold or more reduced.
arXiv Detail & Related papers (2020-07-15T22:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.