AskToAct: Enhancing LLMs Tool Use via Self-Correcting Clarification
- URL: http://arxiv.org/abs/2503.01940v1
- Date: Mon, 03 Mar 2025 12:55:49 GMT
- Title: AskToAct: Enhancing LLMs Tool Use via Self-Correcting Clarification
- Authors: Xuan Zhang, Yongliang Shen, Zhe Zheng, Linjuan Wu, Wenqi Zhang, Yuchen Yan, Qiuying Peng, Jun Wang, Weiming Lu,
- Abstract summary: We present AskToAct, which exploits structural mapping between queries and their tool invocation solutions.<n>Our key insight is that tool parameters naturally represent explicit user intents.<n>By systematically removing key parameters from queries while retaining them as ground truth, we enable automated construction of high-quality training data.
- Score: 25.27444694706659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities in tool learning. In real-world scenarios, user queries are often ambiguous and incomplete, requiring effective clarification. However, existing interactive clarification approaches face two critical limitations: reliance on manually constructed datasets and lack of error correction mechanisms during multi-turn clarification. We present AskToAct, which addresses these challenges by exploiting the structural mapping between queries and their tool invocation solutions. Our key insight is that tool parameters naturally represent explicit user intents. By systematically removing key parameters from queries while retaining them as ground truth, we enable automated construction of high-quality training data. We further enhance model robustness by fine-tuning on error-correction augmented data using selective masking mechanism, enabling dynamic error detection during clarification interactions. Comprehensive experiments demonstrate that AskToAct significantly outperforms existing approaches, achieving above 79% accuracy in recovering critical unspecified intents and enhancing clarification efficiency by an average of 48.34% while maintaining high accuracy in tool invocation. Our framework exhibits robust performance across varying complexity levels and successfully generalizes to entirely unseen APIs without additional training, achieving performance comparable to GPT-4 with substantially fewer computational resources.
Related papers
- Out of Style: RAG's Fragility to Linguistic Variation [29.59506089890902]
User queries exhibit greater linguistic variations and can trigger cascading errors across interdependent RAG components.
We analyze how varying four linguistic dimensions (formality, readability, politeness, and grammatical correctness) impact RAG performance.
arXiv Detail & Related papers (2025-04-11T03:30:26Z) - AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing [64.79967583649407]
Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences.
Existing KT models typically follow a single-step training paradigm, which leads to significant error accumulation.
We propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT) which focuses on the multi-step KT task.
arXiv Detail & Related papers (2025-04-07T03:31:57Z) - Learning LLM Preference over Intra-Dialogue Pairs: A Framework for Utterance-level Understandings [9.763273544617176]
Large language models (LLMs) have demonstrated remarkable capabilities in handling complex dialogue tasks without requiring use case-specific fine-tuning.
In this paper, we introduce a simple yet effective framework to address this challenge.
Our approach is specifically designed for per-utterance classification problems, which encompass tasks such as intent detection, dialogue state tracking, and more.
arXiv Detail & Related papers (2025-03-07T17:46:13Z) - Self-Memory Alignment: Mitigating Factual Hallucinations with Generalized Improvement [37.59724553583446]
Large Language Models (LLMs) often struggle to align their responses with objective facts, resulting in factual hallucinations.<n>We introduce self-memory alignment (SMA), which fine-tunes the model on self-generated responses to precise and simple factual questions.<n>Extensive experiments show that SMA significantly improves LLMs' overall performance, with consistent enhancement across various benchmarks concerning factuality, as well as helpfulness and comprehensive skills.
arXiv Detail & Related papers (2025-02-26T13:34:52Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.<n>MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.<n>Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model hallucinations.
Existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving.
We introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off.
arXiv Detail & Related papers (2025-02-17T18:56:20Z) - Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training [18.896813839389893]
We propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly.<n>Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones.<n>Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction.
arXiv Detail & Related papers (2025-01-20T11:46:04Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
We introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.<n>Results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArithm), logical reasoning and commonsense tasks.<n>Our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-10T17:14:36Z) - On the Worst Prompt Performance of Large Language Models [93.13542053835542]
Performance of large language models (LLMs) is acutely sensitive to the phrasing of prompts.
We introduce RobustAlpacaEval, a new benchmark that consists of semantically equivalent case-level queries.
Experiments on RobustAlpacaEval with ChatGPT and six open-source LLMs from the Llama, Mistral, and Gemma families uncover substantial variability in model performance.
arXiv Detail & Related papers (2024-06-08T13:40:38Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
We propose a modular paradigm ReWOO that detaches the reasoning process from external observations, thus significantly reducing token consumption.
We show that ReWOO achieves 5x token efficiency and 4% accuracy improvement on HotpotQA, a multi-step reasoning benchmark.
Our illustrative work offloads reasoning ability from 175B GPT3.5 into 7B LLaMA, demonstrating the significant potential for truly efficient and scalable ALM systems.
arXiv Detail & Related papers (2023-05-23T00:16:48Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.