Superconducting qubit based on a single molecule: the carbon nanotube gatemon
- URL: http://arxiv.org/abs/2503.01978v1
- Date: Mon, 03 Mar 2025 19:00:38 GMT
- Title: Superconducting qubit based on a single molecule: the carbon nanotube gatemon
- Authors: H. Riechert, S. Annabi, A. Peugeot, H. Duprez, M. Hantute, K. Watanabe, T. Taniguchi, E. Arrighi, J. Griesmar, J. -D. Pillet, L. Bretheau,
- Abstract summary: We present the coherent control of a gatemon based on a single molecule, a one-dimensional carbon nanotube.<n>The measured qubit spectrum can be tuned with a gate voltage and reflects the quantum dot behaviour of the nanotube.<n>Our work paves the way for studying microscopic fermionic processes in low-dimensional quantum conductors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gate-tunable transmon qubits are based on quantum conductors used as weak links within hybrid Josephson junctions. These gatemons have been implemented in just a handful of systems, all relying on extended conductors, namely epitaxial semiconductors or exfoliated graphene. Here we present the coherent control of a gatemon based on a single molecule, a one-dimensional carbon nanotube, which is integrated into a circuit quantum electrodynamics architecture. The measured qubit spectrum can be tuned with a gate voltage and reflects the quantum dot behaviour of the nanotube. Our ultraclean integration, using a hexagonal boron nitride substrate, results in record coherence times of 200ns for such a qubit. Furthermore, we investigate its decoherence mechanisms, thus revealing a strong gate dependence and identifying charge noise as a limiting factor. On top of positioning carbon nanotubes as contenders for future quantum technologies, our work paves the way for studying microscopic fermionic processes in low-dimensional quantum conductors.
Related papers
- Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.<n>This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Quantum thermodynamics with a single superconducting vortex [44.99833362998488]
We demonstrate complete control over dynamics of a single superconducting vortex in a nanostructure.
Our device allows us to trap the vortex in a field-cooled aluminum nanosquare and expel it on demand with a nanosecond pulse of electrical current.
arXiv Detail & Related papers (2024-02-09T14:16:20Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Quantum Dots / Spin Qubits [0.0]
Spin qubits in semiconductor quantum dots represent a prominent family of solid-state qubits in the effort to build a quantum computer.
The simplest spin qubit is a single electron spin located in a quantum dot.
Spin qubits experience complex effects due to their semiconductor environment.
arXiv Detail & Related papers (2022-04-08T19:21:19Z) - A gate-tunable graphene Josephson parametric amplifier [0.31458406135473804]
Superconducting quantum circuits have contributed to dramatic advances in microwave quantum optics.
Superconducting parametric amplifiers, like quantum bits, typically utilize a Josephson junction as a source of magnetically tunable and dissipation-free nonlinearity.
Here we demonstrate a parametric amplifier leveraging a graphene Josephson junction and show that its working frequency is widely tunable with a gate voltage.
arXiv Detail & Related papers (2022-04-05T13:00:40Z) - A strain-engineered graphene qubit in a nanobubble [0.0]
We propose a controllable qubit in a graphene nanobubble with emergent two-level systems induced by pseudo-magnetic fields.
We found that double quantum dots can be created by the strain-induced pseudo-magnetic fields of a nanobubble, and that their quantum states can be manipulated by either local gate potentials or the pseudo-magnetic fields.
arXiv Detail & Related papers (2021-11-24T03:29:24Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Flopping-mode electric dipole spin resonance in phosphorus donor qubits
in silicon [0.0]
Single spin qubits based on phosphorus donors in silicon are a promising candidate for a large-scale quantum computer.
We present a proposal for a flopping-mode electric dipole spin resonance qubit based on the combined electron and nuclear spin states of a double phosphorus donor quantum dot.
arXiv Detail & Related papers (2021-05-06T18:11:00Z) - Proposal for a nanomechanical qubit [0.0]
A mechanical quantum bit could provide an important new platform for quantum computation and sensing.
We show that by coupling one of the flexural modes of a suspended carbon nanotube to the charge states of a double quantum dot defined in the nanotube, it is possible to induce sufficient anharmonicity.
Remarkably, the dephasing due to the quantum dot is expected to be reduced by several orders of magnitude in the coupled system.
arXiv Detail & Related papers (2020-08-24T15:54:23Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.