Proposal for a nanomechanical qubit
- URL: http://arxiv.org/abs/2008.10524v3
- Date: Mon, 23 Aug 2021 08:19:59 GMT
- Title: Proposal for a nanomechanical qubit
- Authors: F. Pistolesi, A.N. Cleland, and A. Bachtold
- Abstract summary: A mechanical quantum bit could provide an important new platform for quantum computation and sensing.
We show that by coupling one of the flexural modes of a suspended carbon nanotube to the charge states of a double quantum dot defined in the nanotube, it is possible to induce sufficient anharmonicity.
Remarkably, the dephasing due to the quantum dot is expected to be reduced by several orders of magnitude in the coupled system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mechanical oscillators have been demonstrated with very high quality factors
over a wide range of frequencies. These also couple to a wide variety of fields
and forces, making them ideal as sensors. The realization of a
mechanically-based quantum bit could therefore provide an important new
platform for quantum computation and sensing. Here we show that by coupling one
of the flexural modes of a suspended carbon nanotube to the charge states of a
double quantum dot defined in the nanotube, it is possible to induce sufficient
anharmonicity in the mechanical oscillator so that the coupled system can be
used as a mechanical quantum bit. This can however only be achieved when the
device enters the ultrastrong coupling regime. We discuss the conditions for
the anharmonicity to appear, and we show that the Hamiltonian can be mapped
onto an anharmonic oscillator, allowing us to work out the energy level
structure and how decoherence from the quantum dot and the mechanical
oscillator are inherited by the qubit. Remarkably, the dephasing due to the
quantum dot is expected to be reduced by several orders of magnitude in the
coupled system. We outline qubit control, readout protocols, the realization of
a CNOT gate by coupling two qubits to microwave cavity, and finally how the
qubit can be used as a static force quantum sensor.
Related papers
- A Nanomechanical Atomic Force Qubit [0.0]
We propose using atomic forces to realize a silicon nanomechanical qubit without coupling to an ancillary qubit.
The proposed qubit operates at 60 MHz with a single-phonon level anharmonicity of 5 MHz.
arXiv Detail & Related papers (2024-07-22T05:30:44Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Can the displacemon device test objective collapse models? [0.0]
"Displacemon" is a proposed electromechanical device consisting of a mechanical resonator flux-coupled to a superconducting qubit.
In the original proposal, the mechanical resonator was a carbon nanotube, containing $106$ nucleons.
We propose using an aluminium mechanical resonator on two larger mass scales, one inspired by the Marshall-Simon-Penrose-Bouwmeester moving-mirror proposal, and one set by the Planck mass.
arXiv Detail & Related papers (2021-10-28T14:56:30Z) - Quantum state preparation, tomography, and entanglement of mechanical
oscillators [0.0]
We use a superconducting qubit to control and read out the quantum state of a pair of nanomechanical resonators.
Our result represents a concrete step toward feedback-based operation of a quantum acoustic processor.
arXiv Detail & Related papers (2021-10-14T17:28:25Z) - Parity measurement in the strong dispersive regime of circuit quantum
acoustodynamics [1.7673364730995766]
We show direct measurements of the phonon number distribution and parity of nonclassical mechanical states.
These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors.
Our results open the door to performing even more complex quantum algorithms using mechanical systems.
arXiv Detail & Related papers (2021-10-01T08:40:26Z) - Strong angular momentum optomechanical coupling for macroscopic quantum
control [5.693393434312775]
We propose a quantum optomechanical system involving exchange interaction between spin angular momentum of light and a torsional oscillator.
We demonstrate that this system allows coherent control of the torsional quantum state of a torsional oscillator on the single photon level.
Our work provides a platform to verify the validity of quantum mechanics in macroscopic systems on the micrometer and even centimeter scale.
arXiv Detail & Related papers (2021-09-29T03:18:48Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.