論文の概要: Pretrained Embeddings as a Behavior Specification Mechanism
- arxiv url: http://arxiv.org/abs/2503.02012v1
- Date: Mon, 03 Mar 2025 19:41:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:25:37.558886
- Title: Pretrained Embeddings as a Behavior Specification Mechanism
- Title(参考訳): 行動規定機構としてのプレトレーニングインベディング
- Authors: Parv Kapoor, Abigail Hammer, Ashish Kapoor, Karen Leung, Eunsuk Kang,
- Abstract要約: 仕様言語における第一級コンストラクトとして埋め込みを導入する。
埋め込みベースの仕様は、望ましい行動に向けてシステムを操るのに有効であることを示す。
- 参考スコア(独自算出の注目度): 17.86560073144763
- License:
- Abstract: We propose an approach to formally specifying the behavioral properties of systems that rely on a perception model for interactions with the physical world. The key idea is to introduce embeddings -- mathematical representations of a real-world concept -- as a first-class construct in a specification language, where properties are expressed in terms of distances between a pair of ideal and observed embeddings. To realize this approach, we propose a new type of temporal logic called Embedding Temporal Logic (ETL), and describe how it can be used to express a wider range of properties about AI-enabled systems than previously possible. We demonstrate the applicability of ETL through a preliminary evaluation involving planning tasks in robots that are driven by foundation models; the results are promising, showing that embedding-based specifications can be used to steer a system towards desirable behaviors.
- Abstract(参考訳): 本稿では,物理世界との相互作用に対する知覚モデルに依存するシステムの行動特性を,形式的に規定するアプローチを提案する。
鍵となる考え方は、実世界の概念の数学的表現である埋め込みを、一対の理想と観察された埋め込みの間の距離でプロパティが表現される仕様言語における第一級の構成として導入することである。
このアプローチを実現するために、Embedding Temporal Logic (ETL) と呼ばれる新しい時間論理を提案し、AI対応システムに関するより広範な特性を表現するためにどのように使用できるかを説明する。
本研究では,基礎モデルによって駆動されるロボットの計画作業に関する予備評価を通じてETLの適用性を示す。
関連論文リスト
- Sparks of Explainability: Recent Advancements in Explaining Large Vision Models [6.1642231492615345]
この論文は、ディープニューラルネットワークによって利用される特徴を分析し、モデル化することにより、コンピュータビジョンにおける説明可能性を改善するための高度なアプローチを探求する。
アルゴリズム的安定性に基づく計量とソボル指標を用いたアプローチを導入することにより、帰属法、特にサリエンシマップを評価する。
モデルと人間の推論を一致させ、概念的説明可能性アプローチを採用するという2つの仮説が検討されている。
論文 参考訳(メタデータ) (2025-02-03T04:49:32Z) - ECATS: Explainable-by-design concept-based anomaly detection for time series [0.5956301166481089]
本稿では,概念をSTL(Signal Temporal Logic)公式として表現する概念に基づくニューロシンボリックアーキテクチャであるECATSを提案する。
我々は,局所的な解釈可能性を確保しつつ,優れた分類性能が得られることを示す。
論文 参考訳(メタデータ) (2024-05-17T08:12:53Z) - Towards a General Framework for Continual Learning with Pre-training [55.88910947643436]
本稿では,事前学習を用いた逐次到着タスクの連続学習のための一般的な枠組みを提案する。
我々はその目的を,タスク内予測,タスク同一性推論,タスク適応予測という3つの階層的構成要素に分解する。
本稿では,パラメータ効率細調整(PEFT)技術と表現統計量を用いて,これらのコンポーネントを明示的に最適化する革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-10-21T02:03:38Z) - Compositional Probabilistic and Causal Inference using Tractable Circuit
Models [20.07977560803858]
我々は、構造化分解可能なPCにおける(マルジナル)決定性の新規な定式化であるmd-vtreesを紹介する。
我々は,PC上でのバックドア調整などの因果推論クエリに対して,最初のpolytimeアルゴリズムを導出する。
論文 参考訳(メタデータ) (2023-04-17T13:48:16Z) - Planning for Learning Object Properties [117.27898922118946]
我々は、物体特性を象徴的な計画問題として認識するために、ニューラルネットワークを自動的に訓練する問題を定式化する。
トレーニングデータセット作成と学習プロセスを自動化するための戦略を作成するために,計画手法を使用します。
シミュレーションと実環境の両方で実験的な評価を行う。
論文 参考訳(メタデータ) (2023-01-15T09:37:55Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z) - Characterizing an Analogical Concept Memory for Architectures
Implementing the Common Model of Cognition [1.468003557277553]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2020-06-02T21:54:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。