Four Principles for Physically Interpretable World Models
- URL: http://arxiv.org/abs/2503.02143v1
- Date: Tue, 04 Mar 2025 00:19:32 GMT
- Title: Four Principles for Physically Interpretable World Models
- Authors: Jordan Peper, Zhenjiang Mao, Yuang Geng, Siyuan Pan, Ivan Ruchkin,
- Abstract summary: There is a growing need for trustworthy world models that can reliably predict future high-dimensional observations.<n>In this paper, we argue for a fundamental shift from physically informed to physically interpretable world models.
- Score: 1.9573380763700712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As autonomous systems are increasingly deployed in open and uncertain settings, there is a growing need for trustworthy world models that can reliably predict future high-dimensional observations. The learned latent representations in world models lack direct mapping to meaningful physical quantities and dynamics, limiting their utility and interpretability in downstream planning, control, and safety verification. In this paper, we argue for a fundamental shift from physically informed to physically interpretable world models - and crystallize four principles that leverage symbolic knowledge to achieve these ends: (1) structuring latent spaces according to the physical intent of variables, (2) learning aligned invariant and equivariant representations of the physical world, (3) adapting training to the varied granularity of supervision signals, and (4) partitioning generative outputs to support scalability and verifiability. We experimentally demonstrate the value of each principle on two benchmarks. This paper opens several intriguing research directions to achieve and capitalize on full physical interpretability in world models.
Related papers
- Do Vision-Language Models Have Internal World Models? Towards an Atomic Evaluation [54.3628937181904]
Internal world models (WMs) enable agents to understand the world's state and predict transitions.<n>Recent large Vision-Language Models (VLMs), such as OpenAI o3, GPT-4o and Gemini, exhibit potential as general-purpose WMs.
arXiv Detail & Related papers (2025-06-27T03:24:29Z) - SlotPi: Physics-informed Object-centric Reasoning Models [37.32107835829927]
We introduce SlotPi, a physics-informed object-centric reasoning model.<n>Our experiments highlight the model's strengths in tasks such as prediction and Visual Question Answering (VQA) on benchmark and fluid datasets.<n>We have created a real-world dataset encompassing object interactions, fluid dynamics, and fluid-object interactions, on which we validated our model's capabilities.
arXiv Detail & Related papers (2025-06-12T14:53:36Z) - Learning Local Causal World Models with State Space Models and Attention [1.5498250598583487]
We show that a SSM can model the dynamics of a simple environment and learn a causal model at the same time.<n>We pave the way for further experiments that lean into the strength of SSMs and further enhance them with causal awareness.
arXiv Detail & Related papers (2025-05-04T11:57:02Z) - Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning [76.94237859217469]
Physical AI systems need to perceive, understand, and perform complex actions in the physical world.
We present models that can understand the physical world generate appropriate embodied decisions.
We use a hierarchical ontology that captures fundamental knowledge about space, time, and physics.
For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments.
arXiv Detail & Related papers (2025-03-18T22:06:58Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - Towards Physically Interpretable World Models: Meaningful Weakly Supervised Representations for Visual Trajectory Prediction [0.1534667887016089]
Deep learning models are increasingly employed for perception, prediction, and control in complex systems.<n> Embedding physical knowledge into these models is crucial for achieving realistic and consistent outputs.<n>We propose Physically Interpretable World Models, a novel architecture that aligns learned latent representations with real-world physical quantities.
arXiv Detail & Related papers (2024-12-17T12:51:24Z) - WHALE: Towards Generalizable and Scalable World Models for Embodied Decision-making [40.53824201182517]
This paper introduces WHALE, a framework for learning generalizable world models.
We present Whale-ST, a scalable spatial-temporal transformer-based world model with enhanced generalizability.
We also propose Whale-X, a 414M parameter world model trained on 970K trajectories from Open X-Embodiment datasets.
arXiv Detail & Related papers (2024-11-08T15:01:27Z) - Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
World models and video generation are pivotal technologies in the domain of autonomous driving.
This paper investigates the relationship between these two technologies.
By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions.
arXiv Detail & Related papers (2024-11-05T08:58:35Z) - Making Large Language Models into World Models with Precondition and Effect Knowledge [1.8561812622368763]
We show that Large Language Models (LLMs) can be induced to perform two critical world model functions.
We validate that the precondition and effect knowledge generated by our models aligns with human understanding of world dynamics.
arXiv Detail & Related papers (2024-09-18T19:28:04Z) - Learning World Models With Hierarchical Temporal Abstractions: A Probabilistic Perspective [2.61072980439312]
Devising formalisms to develop internal world models is a critical research challenge in the domains of artificial intelligence and machine learning.
This thesis identifies several limitations with the prevalent use of state space models as internal world models.
The structure of models in formalisms facilitates exact probabilistic inference using belief propagation, as well as end-to-end learning via backpropagation through time.
These formalisms integrate the concept of uncertainty in world states, thus improving the system's capacity to emulate the nature of the real world and quantify the confidence in its predictions.
arXiv Detail & Related papers (2024-04-24T12:41:04Z) - Zero-shot Safety Prediction for Autonomous Robots with Foundation World Models [0.12499537119440243]
A world model creates a surrogate world to train a controller and predict safety violations by learning the internal dynamic model of systems.
We propose foundation world models that embed observations into meaningful and causally latent representations.
This enables the surrogate dynamics to directly predict causal future states by leveraging a training-free large language model.
arXiv Detail & Related papers (2024-03-30T20:03:49Z) - Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation [48.66623377464203]
Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science.
This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks.
arXiv Detail & Related papers (2024-03-22T17:11:47Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Robust and Controllable Object-Centric Learning through Energy-based
Models [95.68748828339059]
ours is a conceptually simple and general approach to learning object-centric representations through an energy-based model.
We show that ours can be easily integrated into existing architectures and can effectively extract high-quality object-centric representations.
arXiv Detail & Related papers (2022-10-11T15:11:15Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.