Diversity of Superradiant Phase Transitions in the Bose-Fermi System under Tight-Binding Model in the Weak-Coupling Regime
- URL: http://arxiv.org/abs/2503.02226v2
- Date: Fri, 09 May 2025 03:06:25 GMT
- Title: Diversity of Superradiant Phase Transitions in the Bose-Fermi System under Tight-Binding Model in the Weak-Coupling Regime
- Authors: Xing Su, Jian-Jian Cheng, Lin Zhang,
- Abstract summary: We present a one-dimensional tight-binding electronic chain intrinsically coupled to a single-mode optical cavity.<n>By employing the quantized electromagnetic vector potential through the Peierls substitution, the gauge-invariant coupled Bose-Fermi system facilitates momentum-dependent superradiant transitions.<n>The quantum phase transitions in this system are characterized by stable dynamics, including the displacement and squeezing of the cavity mode.
- Score: 5.581287929903093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a comprehensive analysis of the dynamic diversity associated with superradiant phase transitions within a one-dimensional tight-binding electronic chain that is intrinsically coupled to a single-mode optical cavity. By employing the quantized electromagnetic vector potential through the Peierls substitution, the gauge-invariant coupled Bose-Fermi system facilitates momentum-dependent superradiant transitions and effectively avoids the second-order spurious phase transitions typically observed in Dicke-like models. The quantum phase transitions in this system are characterized by stable dynamics, including the displacement and squeezing of the cavity mode and the redistribution of electronic momentum in the solid chain. Distinct from multimode cavity QED systems with atomic gases, this single-mode optical configuration unveils a range of nonlinear phenomena, including multistability and diversity of spontaneous symmetry breaking. The setup allows for precise manipulation of superradiant phases in the weak coupling regime, effectively mitigating the adverse effects of quantum fluctuation divergences. The diverse attributes of these quantum phase transitions enhance our understanding of tunable quantum solid devices and underscore their potential applications in quantum information processing and metrology.
Related papers
- Dynamical quantum phase transition with divergent multipartite entanglement [3.8286668229859098]
We investigate the nonequilibrium quench dynamics of the one-dimensional transverse-field Ising model in both integrable and nonintegrable regimes.<n>We report on a novel type of dynamical quantum phase transition (DQPT) that is characterized by a divergent multipartite entanglement at critical times in the post-quench dynamics.
arXiv Detail & Related papers (2025-06-16T18:19:20Z) - Avoided-crossings, degeneracies and Berry phases in the spectrum of quantum noise through analytic Bloch-Messiah decomposition [49.1574468325115]
"analytic Bloch-Messiah decomposition" provides approach for characterizing dynamics of quantum optical systems.
We show that avoided crossings arise naturally when a single parameter is varied, leading to hypersensitivity of the singular vectors.
We highlight the possibility of programming the spectral response of photonic systems through the deliberate design of avoided crossings.
arXiv Detail & Related papers (2025-04-29T13:14:15Z) - Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Nonreciprocal Superradiant Phase Transitions and Multicriticality in a Cavity QED System [4.647630244371672]
We show nonreciprocal superradiant phase transitions and novel multicriticality in a cavity quantum electrodynamics system.
Results open a new door for all-optical manipulation of superradiant transitions and multicritical behaviors in light-matter systems.
arXiv Detail & Related papers (2024-05-22T13:15:07Z) - Observation of critical phase transition in a generalized
Aubry-Andr\'e-Harper model on a superconducting quantum processor with
tunable couplers [22.968091212322523]
Quantum simulation enables study of many-body systems in non-equilibrium.
We simulate the one-dimensional generalized Aubry-Andr'e-Harper model for three different phases.
We observe the spin transport for initial single- and multi-excitation states in different phases.
arXiv Detail & Related papers (2022-06-27T08:22:19Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Nonequilibrium phase transition in a single-electron micromaser [0.0]
Phase transitions occur in a wide range of physical systems and are characterized by the abrupt change of a physical observable.
Here, we investigate a nonequilibrium phase transition in a single-electron micromaser consisting of a microwave cavity.
We find that the phase transition can be predicted from short-time measurements of the higher-order factorial cumulants.
arXiv Detail & Related papers (2022-01-16T20:12:46Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Parity-symmetry-breaking quantum phase transition via parametric drive
in a cavity magnonic system [6.881569041306451]
We study the parity-symmetry-breaking quantum phase transition (QPT) in a cavity magnonic system driven by a parametric field.
Our work provides an alternate way to engineer the QPT in a hybrid quantum system containing the spin ensemble in a ferri- or ferromagnetic material.
arXiv Detail & Related papers (2021-05-18T08:52:44Z) - Many-body localization in waveguide QED [0.0]
We consider a waveguide quantum electrodynamics model, where two-level atoms interact with and via propagating photons in a one-dimensional waveguide.
We show that such a system exhibits a many-body localized(MBL) phase, provided that atoms are less than half excited.
arXiv Detail & Related papers (2021-01-05T16:54:25Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
arXiv Detail & Related papers (2020-12-10T19:00:03Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.