Semantic Prior Distillation with Vision Foundation Model for Enhanced Rapid Bone Scintigraphy Image Restoration
- URL: http://arxiv.org/abs/2503.02321v2
- Date: Tue, 18 Mar 2025 05:23:43 GMT
- Title: Semantic Prior Distillation with Vision Foundation Model for Enhanced Rapid Bone Scintigraphy Image Restoration
- Authors: Pengchen Liang, Leijun Shi, Huiping Yao, Bin Pu, Jianguo Chen, Lei Zhao, Haishan Huang, Zhuangzhuang Chen, Zhaozhao Xu, Lite Xu, Qing Chang, Yiwei Li,
- Abstract summary: We propose the first application of SAM-based semantic priors for medical image restoration.<n>Our method comprises two cascaded networks, $fIR1$ and $fIR2$, augmented by three key modules.<n>We will release a novel Rapid Bone Scintigraphy dataset called RBS, the first dataset dedicated to rapid bone scintigraphy image restoration in pediatric patients.
- Score: 12.091587412851625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid bone scintigraphy is an essential tool for diagnosing skeletal diseases and tumor metastasis in pediatric patients, as it reduces scan time and minimizes patient discomfort. However, rapid scans often result in poor image quality, potentially affecting diagnosis due to reduced resolution and detail, which make it challenging to identify and evaluate finer anatomical structures. To address this issue, we propose the first application of SAM-based semantic priors for medical image restoration, leveraging the Segment Anything Model (SAM) to enhance rapid bone scintigraphy images in pediatric populations. Our method comprises two cascaded networks, $f^{IR1}$ and $f^{IR2}$, augmented by three key modules: a Semantic Prior Integration (SPI) module, a Semantic Knowledge Distillation (SKD) module, and a Semantic Consistency Module (SCM). The SPI and SKD modules incorporate domain-specific semantic information from a fine-tuned SAM, while the SCM maintains consistent semantic feature representation throughout the cascaded networks. In addition, we will release a novel Rapid Bone Scintigraphy dataset called RBS, the first dataset dedicated to rapid bone scintigraphy image restoration in pediatric patients. RBS consists of 137 pediatric patients aged between 0.5 and 16 years who underwent both standard and rapid bone scans. The dataset includes scans performed at 20 cm/min (standard) and 40 cm/min (rapid), representing a $2\times$ acceleration. We conducted extensive experiments on both the publicly available endoscopic dataset and RBS. The results demonstrate that our method outperforms all existing methods across various metrics, including PSNR, SSIM, FID, and LPIPS.
Related papers
- Learning from Anatomy: Supervised Anatomical Pretraining (SAP) for Improved Metastatic Bone Disease Segmentation in Whole-Body MRI [0.7330217643497285]
We propose a Supervised Anatomical Pretraining (SAP) method that learns from a limited dataset of anatomical labels.<n>SAP significantly outperforms both the baseline and SSL-pretrained models, achieving a normalized surface Dice of 0.76 and a Dice coefficient of 0.64.<n>When considering only clinically relevant lesions larger than 1ml, SAP achieves a detection sensitivity of 100% in 28 out of 32 patients.
arXiv Detail & Related papers (2025-06-24T12:59:44Z) - ViCTr: Vital Consistency Transfer for Pathology Aware Image Synthesis [0.715632820500919]
Existing methods struggle to maintain anatomical fidelity while accurately modeling pathological features.<n>ViCTr is a novel two-stage framework that combines a rectified flow trajectory with a Tweedie-corrected diffusion process to achieve high-fidelity, pathology-aware image synthesis.<n>To our knowledge, ViCTr is the first method to provide fine-grained, pathology-aware MRI synthesis with graded severity control.
arXiv Detail & Related papers (2025-05-08T05:44:16Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.<n>We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.<n>Our model is based on neural operators, a discretization-agnostic architecture.<n>Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
We introduce MedCLIP-SAMv2, a novel framework that integrates the CLIP and SAM models to perform segmentation on clinical scans.<n>Our approach includes fine-tuning the BiomedCLIP model with a new Decoupled Hard Negative Noise Contrastive Estimation (DHN-NCE) loss.<n>We also investigate using zero-shot segmentation labels within a weakly supervised paradigm to enhance segmentation quality further.
arXiv Detail & Related papers (2024-09-28T23:10:37Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
We propose a novel framework, called MedCLIP-SAM, that combines CLIP and SAM models to generate segmentation of clinical scans.
By extensively testing three diverse segmentation tasks and medical image modalities, our proposed framework has demonstrated excellent accuracy.
arXiv Detail & Related papers (2024-03-29T15:59:11Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - Self-Sampling Meta SAM: Enhancing Few-shot Medical Image Segmentation
with Meta-Learning [17.386754270460273]
We present a Self-Sampling Meta SAM framework for few-shot medical image segmentation.
The proposed method achieves significant improvements over state-of-the-art methods in few-shot segmentation.
In conclusion, we present a novel approach for rapid online adaptation in interactive image segmentation, adapting to a new organ in just 0.83 minutes.
arXiv Detail & Related papers (2023-08-31T05:20:48Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
COVID-19 diagnosis can now be done efficiently using PCR tests, but this use case exemplifies the need for a methodology to overcome data variability issues.
We propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans.
arXiv Detail & Related papers (2022-08-19T15:49:47Z) - Ensemble uncertainty as a criterion for dataset expansion in distinct
bone segmentation from upper-body CT images [0.7388859384645263]
The localisation and segmentation of individual bones is an important preprocessing step in many planning and navigation applications.
We present an end-to-end learnt algorithm that is capable of segmenting 125 distinct bones in an upper-body CT.
We also provide an ensemble-based uncertainty measure that helps to single out scans to enlarge the training dataset with.
arXiv Detail & Related papers (2022-08-19T08:39:23Z) - Spatiotemporal Feature Learning Based on Two-Step LSTM and Transformer
for CT Scans [2.3682456328966115]
We propose a novel, effective, two-step-wise approach to tickle this issue for COVID-19 symptom classification thoroughly.
First, the semantic feature embedding of each slice for a CT scan is extracted by conventional backbone networks.
Then, we proposed a long short-term memory (LSTM) and Transformer-based sub-network to deal with temporal feature learning.
arXiv Detail & Related papers (2022-07-04T16:59:05Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - CNN-LSTM Based Multimodal MRI and Clinical Data Fusion for Predicting
Functional Outcome in Stroke Patients [1.5250925845050138]
Clinical outcome prediction plays an important role in stroke patient management.
From a machine learning point-of-view, one of the main challenges is dealing with heterogeneous data.
In this paper a multimodal convolutional neural network - long short-term memory (CNN-LSTM) based ensemble model is proposed.
arXiv Detail & Related papers (2022-05-11T14:46:01Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
We investigate whether extending this problem to full 4D deep learning using a history of MRI volumes can improve performance.
We find that our proposed architecture outperforms previous approaches with a lesion-wise true positive rate of 0.84 at a lesion-wise false positive rate of 0.19.
arXiv Detail & Related papers (2020-04-20T11:41:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.