Through the Static: Demystifying Malware Visualization via Explainability
- URL: http://arxiv.org/abs/2503.02441v1
- Date: Tue, 04 Mar 2025 09:38:50 GMT
- Title: Through the Static: Demystifying Malware Visualization via Explainability
- Authors: Matteo Brosolo, Vinod Puthuvath, Mauro Conti,
- Abstract summary: We study robustness and explainability of Convolutional Neural Networks (CNNs)<n>Our study addresses these gaps by replicating six CNN models and exploring their pitfalls.<n>This approach yields substantial improvements in F1 score, ranging from 2% to 8%, across the datasets.
- Score: 15.43868945929965
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Security researchers grapple with the surge of malicious files, necessitating swift identification and classification of malware strains for effective protection. Visual classifiers and in particular Convolutional Neural Networks (CNNs) have emerged as vital tools for this task. However, issues of robustness and explainability, common in other high risk domain like medicine and autonomous vehicles, remain understudied in current literature. Although deep learning visualization classifiers presented in research obtain great results without the need for expert feature extraction, they have not been properly studied in terms of their replicability. Additionally, the literature is not clear on how these types of classifiers arrive to their answers. Our study addresses these gaps by replicating six CNN models and exploring their pitfalls. We employ Class Activation Maps (CAMs), like GradCAM and HiResCAM, to assess model explainability. We evaluate the CNNs' performance and interpretability on two standard datasets, MalImg and Big2015, and a newly created called VX-Zoo. We employ these different CAM techniques to gauge the explainability of each of the models. With these tools, we investigate the underlying factors contributing to different interpretations of inputs across the different models, empowering human researchers to discern patterns crucial for identifying distinct malware families and explain why CNN models arrive at their conclusions. Other then highlighting the patterns found in the interpretability study, we employ the extracted heatmpas to enhance Visual Transformers classifiers' performance and explanation quality. This approach yields substantial improvements in F1 score, ranging from 2% to 8%, across the datasets compared to benchmark values.
Related papers
- The Road Less Traveled: Investigating Robustness and Explainability in CNN Malware Detection [15.43868945929965]
We integrate quantitative analysis with explainability tools to better understand CNN behavior in malware classification.<n> obfuscation techniques can reduce model accuracy by up to 50%, and propose a mitigation strategy to enhance robustness.<n>This work contributes to improving the interpretability and resilience of deep learning-based intrusion detection systems.
arXiv Detail & Related papers (2025-03-03T10:42:00Z) - Shortcut Learning Susceptibility in Vision Classifiers [3.004632712148892]
Shortcut learning is where machine learning models exploit spurious correlations in data instead of capturing meaningful features.<n>This phenomenon is prevalent across various machine learning applications, including vision, natural language processing, and speech recognition.<n>We systematically evaluate these architectures by introducing deliberate shortcuts into the dataset that are positionally correlated with class labels.
arXiv Detail & Related papers (2025-02-13T10:25:52Z) - Undermining Image and Text Classification Algorithms Using Adversarial Attacks [0.0]
Our study addresses the gap by training various machine learning models and using GANs and SMOTE to generate additional data points aimed at attacking text classification models.
Our experiments reveal a significant vulnerability in classification models. Specifically, we observe a 20 % decrease in accuracy for the top-performing text classification models post-attack, along with a 30 % decrease in facial recognition accuracy.
arXiv Detail & Related papers (2024-11-03T18:44:28Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
Perceptual video quality assessment (VQA) is an integral component of many streaming and video sharing platforms.
Here we consider the problem of learning perceptually relevant video quality representations in a self-supervised manner.
Our results indicate that compelling representations with perceptual bearing can be obtained using self-supervised learning.
arXiv Detail & Related papers (2022-06-29T15:22:01Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
We investigate the reason behind the surprising adversarial brittleness of scoring models.
Our results indicate that autoscoring models, despite getting trained as "end-to-end" models, behave like bag-of-words models.
We propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies.
arXiv Detail & Related papers (2021-09-24T03:49:38Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Eigen-CAM: Class Activation Map using Principal Components [1.2691047660244335]
This paper builds on previous ideas to cope with the increasing demand for interpretable, robust, and transparent models.
The proposed Eigen-CAM computes and visualizes the principle components of the learned features/representations from the convolutional layers.
arXiv Detail & Related papers (2020-08-01T17:14:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.