論文の概要: NodeNAS: Node-Specific Graph Neural Architecture Search for Out-of-Distribution Generalization
- arxiv url: http://arxiv.org/abs/2503.02448v1
- Date: Tue, 04 Mar 2025 09:45:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:14:01.662096
- Title: NodeNAS: Node-Specific Graph Neural Architecture Search for Out-of-Distribution Generalization
- Title(参考訳): NodeNAS: アウト・オブ・ディストリビューションの一般化のためのノード特有なグラフニューラルネットワーク検索
- Authors: Qiyi Wang, Yinning Shao, Yunlong Ma, Min Liu,
- Abstract要約: Graph Neural Architecture Search (GraphNAS)は、分散シフトによるグラフニューラルネットワーク(GNN)の性能劣化を緩和する利点を実証している。
ノード固有のグラフニューラルネットワークサーチ(NodeNAS)を提案する。
また,適応アグリゲーションアテンションに基づくマルチディムノードNAS法(MNNAS)を提案する。
- 参考スコア(独自算出の注目度): 6.069120487541545
- License:
- Abstract: Graph neural architecture search (GraphNAS) has demonstrated advantages in mitigating performance degradation of graph neural networks (GNNs) due to distribution shifts. Recent approaches introduce weight sharing across tailored architectures, generating unique GNN architectures for each graph end-to-end. However, existing GraphNAS methods do not account for distribution patterns across different graphs and heavily rely on extensive training data. With sparse or single training graphs, these methods struggle to discover optimal mappings between graphs and architectures, failing to generalize to out-of-distribution (OOD) data. In this paper, we propose node-specific graph neural architecture search(NodeNAS), which aims to tailor distinct aggregation methods for different nodes through disentangling node topology and graph distribution with limited datasets. We further propose adaptive aggregation attention based multi-dim NodeNAS method(MNNAS), which learns an node-specific architecture customizer with good generalizability. Specifically, we extend the vertical depth of the search space, supporting simultaneous node-specific architecture customization across multiple dimensions. Moreover, we model the power-law distribution of node degrees under varying assortativity, encoding structure invariant information to guide architecture customization across each dimension. Extensive experiments across supervised and unsupervised tasks demonstrate that MNNAS surpasses state-of-the-art algorithms and achieves excellent OOD generalization.
- Abstract(参考訳): Graph Neural Architecture Search (GraphNAS)は、分散シフトによるグラフニューラルネットワーク(GNN)の性能劣化を緩和する利点を実証している。
最近のアプローチでは、各グラフのエンドツーエンドに独自のGNNアーキテクチャを生成するために、カスタマイズされたアーキテクチャ間の重み共有が導入されている。
しかし、既存のGraphNASメソッドは、異なるグラフ間の分散パターンを考慮せず、広範なトレーニングデータに大きく依存している。
スパースグラフやシングルトレーニンググラフでは、これらの手法はグラフとアーキテクチャ間の最適なマッピングを見つけるのに苦労し、アウト・オブ・ディストリビューション(OOD)データへの一般化に失敗する。
本稿では,ノードトポロジとグラフ分布を限定データセットで切り離すことにより,異なるノードに対して異なるアグリゲーション手法をカスタマイズすることを目的としたノード固有グラフニューラルアーキテクチャサーチ(NodeNAS)を提案する。
さらに,適応アグリゲーションアテンションに基づくマルチディムノードNAS法(MNNAS)を提案する。
具体的には、探索空間の垂直深さを拡張し、複数の次元にわたるノード固有のアーキテクチャの同時カスタマイズをサポートする。
さらに,各次元にまたがるアーキテクチャのカスタマイズを誘導する構造的不変情報を符号化することで,ノード次数の変化の下での電力-法則分布をモデル化する。
教師付きタスクと教師なしタスクの広範な実験により、MNNASは最先端のアルゴリズムを超越し、優れたOOD一般化を実現することが示されている。
関連論文リスト
- DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理することで人気を集めている。
既存のメソッドは通常、固定数のGNNレイヤを使用して、すべてのグラフの表現を生成する。
本稿では,GNNに2つの改良を加えたDA-MoE法を提案する。
論文 参考訳(メタデータ) (2024-11-05T11:46:27Z) - Towards Lightweight Graph Neural Network Search with Curriculum Graph Sparsification [48.334100429553644]
本稿では,有意義なグラフデータを通じて重要なサブアーキテクチャを識別する結合グラフデータとアーキテクチャ機構を設計することを提案する。
最適軽量グラフニューラルネット(GNN)を探索するために,グラフスペーシングとネットワーク・プルーニング(GASSIP)法を用いた軽量グラフニューラル・アーキテクチャ・サーチを提案する。
本手法は,探索したGNNとスペーサーグラフのモデルパラメータを半分以下にすることで,オンパーあるいはそれ以上高いノード分類性能を実現する。
論文 参考訳(メタデータ) (2024-06-24T06:53:37Z) - Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
グラフニューラルネットワーク(GNN)は,グラフ表現学習において最先端のパフォーマンスを達成した。
我々は新しいアプローチ、すなわち集合構造知識強化グラフニューラルネットワーク(CoS-GNN)を提案する。
論文 参考訳(メタデータ) (2024-05-17T08:50:00Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRAREはノード相対エントロピーと深層強化学習に基づいて構築されたフレームワークである。
革新的なノード相対エントロピーは、ノードペア間の相互情報を測定するために使用される。
グラフトポロジを最適化するために,深層強化学習に基づくアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-15T11:30:18Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Improving Graph Neural Networks with Simple Architecture Design [7.057970273958933]
グラフニューラルネットワークの重要な設計戦略をいくつか紹介する。
簡便で浅いモデルである特徴選択グラフニューラルネットワーク(FSGNN)を紹介します。
提案手法は,他のGNNモデルよりも優れており,ノード分類タスクの精度が最大64%向上していることを示す。
論文 参考訳(メタデータ) (2021-05-17T06:46:01Z) - Schema-Aware Deep Graph Convolutional Networks for Heterogeneous Graphs [10.526065883783899]
グラフ畳み込みネットワーク(GCN)に基づくアプローチは、複雑でグラフ構造化された問題を解決するために大きな進歩を遂げた。
我々はGCNフレームワーク「深部不均一グラフ畳み込みネットワーク(DHGCN)」を提案する。
それは異種グラフのスキーマを利用し、多くのホップを効果的に活用するために階層的アプローチを使用します。
論文 参考訳(メタデータ) (2021-05-03T06:24:27Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。