論文の概要: Weakly-Constrained 4D Var for Downscaling with Uncertainty using Data-Driven Surrogate Models
- arxiv url: http://arxiv.org/abs/2503.02665v1
- Date: Tue, 04 Mar 2025 14:33:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:13:07.642912
- Title: Weakly-Constrained 4D Var for Downscaling with Uncertainty using Data-Driven Surrogate Models
- Title(参考訳): データ駆動サロゲートモデルを用いた不確かさを伴うダウンスケーリングのための弱拘束4次元変数
- Authors: Philip Dinenis, Vishwas Rao, Mihai Anitescu,
- Abstract要約: 動的ダウンスケーリングは通常、数値的な天気予報ソルバを使用して粗いデータをより高い空間分解能に洗練する。
FourCastNetのようなデータ駆動モデルは、予測のための従来のNWPモデルに代わる有望な選択肢として登場した。
本稿では、データ同化手法を用いて、ダウンスケーリングタスクに使用する場合の安定化を提案する。
- 参考スコア(独自算出の注目度): 1.3654846342364308
- License:
- Abstract: Dynamic downscaling typically involves using numerical weather prediction (NWP) solvers to refine coarse data to higher spatial resolutions. Data-driven models such as FourCastNet have emerged as a promising alternative to the traditional NWP models for forecasting. Once these models are trained, they are capable of delivering forecasts in a few seconds, thousands of times faster compared to classical NWP models. However, as the lead times, and, therefore, their forecast window, increase, these models show instability in that they tend to diverge from reality. In this paper, we propose to use data assimilation approaches to stabilize them when used for downscaling tasks. Data assimilation uses information from three different sources, namely an imperfect computational model based on partial differential equations (PDE), from noisy observations, and from an uncertainty-reflecting prior. In this work, when carrying out dynamic downscaling, we replace the computationally expensive PDE-based NWP models with FourCastNet in a ``weak-constrained 4DVar framework" that accounts for the implied model errors. We demonstrate the efficacy of this approach for a hurricane-tracking problem; moreover, the 4DVar framework naturally allows the expression and quantification of uncertainty. We demonstrate, using ERA5 data, that our approach performs better than the ensemble Kalman filter (EnKF) and the unstabilized FourCastNet model, both in terms of forecast accuracy and forecast uncertainty.
- Abstract(参考訳): 動的ダウンスケーリングは通常、数値天気予報(NWP)を用いて粗いデータをより高解像度に洗練する。
FourCastNetのようなデータ駆動モデルは、予測のための従来のNWPモデルに代わる有望な選択肢として登場した。
これらのモデルをトレーニングすると、従来のNWPモデルに比べて数千倍高速な予測を数秒で配信することができる。
しかし、リードタイムが増加し、したがって予測ウィンドウが増加するにつれて、これらのモデルは現実から分岐する傾向にある不安定性を示す。
本稿では、データ同化手法を用いて、ダウンスケーリングタスクに使用する場合の安定化を提案する。
データ同化は、3つの異なる情報源、すなわち偏微分方程式(PDE)に基づく不完全な計算モデル、ノイズの観測、不確かさを反映した事前の予測といった情報を利用する。
本研究では,動的ダウンスケーリングを行う場合,計算コストのかかるPDEベースのNWPモデルを,インプリッドモデルエラーを考慮に入れた ``weak-constrained 4DVar framework' でFourCastNetに置き換える。
ハリケーン追跡問題に対するこのアプローチの有効性を実証し、4DVarフレームワークは自然に不確実性の表現と定量化を可能にしている。
ERA5データを用いて、予測精度と予測不確実性の両面から、アンサンブルカルマンフィルタ(EnKF)と不安定なフーカスネットモデルよりも優れた性能を示すことを示す。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Uncertainty-aware segmentation for rainfall prediction post processing [0.7646713951724011]
日次累積降水量の予測を後処理するための不確実性を考慮した深層学習モデルについて検討する。
本研究では,様々な最先端モデルを比較し,よく知られたSDE-Netの変種を提案する。
その結果,すべてのディープラーニングモデルは,平均的ベースラインNWPソリューションよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-08-28T16:31:40Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Deep Latent State Space Models for Time-Series Generation [68.45746489575032]
状態空間ODEに従って進化する潜伏変数を持つ列の生成モデルLS4を提案する。
近年の深層状態空間モデル(S4)に着想を得て,LS4の畳み込み表現を利用して高速化を実現する。
LS4は, 実世界のデータセット上での限界分布, 分類, 予測スコアにおいて, 従来の連続時間生成モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2022-12-24T15:17:42Z) - SwinVRNN: A Data-Driven Ensemble Forecasting Model via Learned
Distribution Perturbation [16.540748935603723]
本研究では,SwinRNN予測器と摂動モジュールを組み合わせた天気予報モデルであるSwinVRNNを提案する。
SwinVRNNはECMWF統合予測システム(IFS)を2m温度と6時間総降水量で最大5日間のリードタイムで上回っている。
論文 参考訳(メタデータ) (2022-05-26T05:11:58Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Towards physically consistent data-driven weather forecasting:
Integrating data assimilation with equivariance-preserving deep spatial
transformers [2.7998963147546148]
一般的なデータ駆動天気予報モデルと統合する3つのコンポーネントを提案する。
これらのコンポーネントは,1) 等価性を維持するためにU-NETの潜伏空間に付加された深部空間トランスフォーマー,2) ノイズ観測を取り込み,次の予測に対する初期条件を改善するデータ同化アルゴリズム,3) 複数段階のアルゴリズムにより,短時間で予測の精度が向上する。
論文 参考訳(メタデータ) (2021-03-16T23:15:00Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
我々はNWPモデルと意思決定支援の「理想的な」予測とのギャップを埋める方法について述べる。
本研究では,各数値モデルの誤差プロファイルの学習にQuantile Regression Forestsを使用し,これを経験から得られた確率分布を予測に適用する。
第2に、これらの確率予測を量子平均化(quantile averaging)を用いて組み合わせ、第3に、集合量子化の間で補間して完全な予測分布を生成する。
論文 参考訳(メタデータ) (2020-05-06T16:46:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。