Weakly-Constrained 4D Var for Downscaling with Uncertainty using Data-Driven Surrogate Models
- URL: http://arxiv.org/abs/2503.02665v1
- Date: Tue, 04 Mar 2025 14:33:54 GMT
- Title: Weakly-Constrained 4D Var for Downscaling with Uncertainty using Data-Driven Surrogate Models
- Authors: Philip Dinenis, Vishwas Rao, Mihai Anitescu,
- Abstract summary: Dynamic downscaling typically involves using numerical weather prediction solvers to refine coarse data to higher spatial resolutions.<n>Data-driven models such as FourCastNet have emerged as a promising alternative to the traditional NWP models for forecasting.<n>We propose to use data assimilation approaches to stabilize them when used for downscaling tasks.
- Score: 1.3654846342364308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic downscaling typically involves using numerical weather prediction (NWP) solvers to refine coarse data to higher spatial resolutions. Data-driven models such as FourCastNet have emerged as a promising alternative to the traditional NWP models for forecasting. Once these models are trained, they are capable of delivering forecasts in a few seconds, thousands of times faster compared to classical NWP models. However, as the lead times, and, therefore, their forecast window, increase, these models show instability in that they tend to diverge from reality. In this paper, we propose to use data assimilation approaches to stabilize them when used for downscaling tasks. Data assimilation uses information from three different sources, namely an imperfect computational model based on partial differential equations (PDE), from noisy observations, and from an uncertainty-reflecting prior. In this work, when carrying out dynamic downscaling, we replace the computationally expensive PDE-based NWP models with FourCastNet in a ``weak-constrained 4DVar framework" that accounts for the implied model errors. We demonstrate the efficacy of this approach for a hurricane-tracking problem; moreover, the 4DVar framework naturally allows the expression and quantification of uncertainty. We demonstrate, using ERA5 data, that our approach performs better than the ensemble Kalman filter (EnKF) and the unstabilized FourCastNet model, both in terms of forecast accuracy and forecast uncertainty.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Uncertainty-aware segmentation for rainfall prediction post processing [0.7646713951724011]
We explore uncertainty-aware deep learning models for post-processing daily cumulative quantitative precipitation forecasts.
Our study compares different state-of-the-art models, and we propose a variant of the well-known SDE-Net.
Our results show that all deep learning models significantly outperform the average baseline NWP solution.
arXiv Detail & Related papers (2024-08-28T16:31:40Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Forecasting Tropical Cyclones with Cascaded Diffusion Models [4.272401529389713]
This work leverages generative diffusion models to forecast cyclone trajectories and precipitation patterns.
Forecasts can be produced in as little as 30 mins on a single Nvidia A30/RTX 2080 Ti.
arXiv Detail & Related papers (2023-10-02T23:09:59Z) - Deep Latent State Space Models for Time-Series Generation [68.45746489575032]
We propose LS4, a generative model for sequences with latent variables evolving according to a state space ODE.
Inspired by recent deep state space models (S4), we achieve speedups by leveraging a convolutional representation of LS4.
We show that LS4 significantly outperforms previous continuous-time generative models in terms of marginal distribution, classification, and prediction scores on real-world datasets.
arXiv Detail & Related papers (2022-12-24T15:17:42Z) - SwinVRNN: A Data-Driven Ensemble Forecasting Model via Learned
Distribution Perturbation [16.540748935603723]
We propose a Swin Transformer-based Variational Recurrent Neural Network (SwinVRNN), which is a weather forecasting model combining a SwinRNN predictor with a perturbation module.
SwinVRNN surpasses operational ECMWF Integrated Forecasting System (IFS) on surface variables of 2-m temperature and 6-hourly total precipitation at all lead times up to five days.
arXiv Detail & Related papers (2022-05-26T05:11:58Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Towards physically consistent data-driven weather forecasting:
Integrating data assimilation with equivariance-preserving deep spatial
transformers [2.7998963147546148]
We propose 3 components to integrate with commonly used data-driven weather prediction models.
These components are 1) a deep spatial transformer added to latent space of U-NETs to preserve equivariance, 2) a data-assimilation algorithm to ingest noisy observations and improve the initial conditions for next forecasts, and 3) a multi-time-step algorithm, improving the accuracy of forecasts at short intervals.
arXiv Detail & Related papers (2021-03-16T23:15:00Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
We show how to bridge the gap between sets of separate forecasts from NWP models and the 'ideal' forecast for decision support.
We use Quantile Regression Forests to learn the error profile of each numerical model, and use these to apply empirically-derived probability distributions to forecasts.
Second, we combine these probabilistic forecasts using quantile averaging. Third, we interpolate between the aggregate quantiles in order to generate a full predictive distribution.
arXiv Detail & Related papers (2020-05-06T16:46:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.