Shakespearean Sparks: The Dance of Hallucination and Creativity in LLMs' Decoding Layers
- URL: http://arxiv.org/abs/2503.02851v1
- Date: Tue, 04 Mar 2025 18:27:00 GMT
- Title: Shakespearean Sparks: The Dance of Hallucination and Creativity in LLMs' Decoding Layers
- Authors: Zicong He, Boxuan Zhang, Lu Cheng,
- Abstract summary: Large language models (LLMs) are known to hallucinate, a phenomenon often linked to creativity.<n>We introduce an evaluation framework, HCL, which quantifies Hallucination and Creativity across different Layers of LLMs during decoding.<n>Our empirical analysis reveals a tradeoff between hallucination and creativity that is consistent across layer depth, model type, and model size.
- Score: 3.4307476319801213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are known to hallucinate, a phenomenon often linked to creativity. While previous research has primarily explored this connection through theoretical or qualitative lenses, our work takes a quantitative approach to systematically examine the relationship between hallucination and creativity in LLMs. Given the complex nature of creativity, we propose a narrow definition tailored to LLMs and introduce an evaluation framework, HCL, which quantifies Hallucination and Creativity across different Layers of LLMs during decoding. Our empirical analysis reveals a tradeoff between hallucination and creativity that is consistent across layer depth, model type, and model size. Notably, across different model architectures, we identify a specific layer at each model size that optimally balances this tradeoff. Additionally, the optimal layer tends to appear in the early layers of larger models, and the confidence of the model is also significantly higher at this layer. These findings provide a quantitative perspective that offers new insights into the interplay between LLM creativity and hallucination. The code and data for our experiments are available at https://github.com/ZicongHe2002/HCL-Spark.
Related papers
- Towards Long Context Hallucination Detection [49.195854802543714]
Large Language Models (LLMs) have demonstrated remarkable performance across various tasks.
They are prone to contextual hallucination, generating information that is either unsubstantiated or contradictory to the given context.
We propose a novel architecture that enables pre-trained encoder models, such as BERT, to process long contexts and effectively detect contextual hallucinations.
arXiv Detail & Related papers (2025-04-28T03:47:05Z) - From "Hallucination" to "Suture": Insights from Language Philosophy to Enhance Large Language Models [1.03341388090561]
This paper explores hallucination phenomena in large language models (LLMs) through the lens of language philosophy and psychoanalysis.
By incorporating Lacan's concepts of the "chain of signifiers" and "suture points," we propose the Anchor-RAG framework as a novel approach to mitigate hallucinations.
arXiv Detail & Related papers (2025-03-18T16:27:01Z) - A Causality-aware Paradigm for Evaluating Creativity of Multimodal Large Language Models [100.16387798660833]
Oogiri game is a creativity-driven task requiring humor and associative thinking.
LoTbench is an interactive, causality-aware evaluation framework.
Results show that while most LLMs exhibit constrained creativity, the performance gap between LLMs and humans is not insurmountable.
arXiv Detail & Related papers (2025-01-25T09:11:15Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
arXiv Detail & Related papers (2024-10-16T00:15:40Z) - MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation [50.73561815838431]
Multimodal Large Language Models (MLLMs) frequently exhibit hallucination phenomena.
We present an empirical analysis and find that, although MLLMs incorrectly generate the objects in the final output, they are actually able to recognize visual objects in the preceding layers.
Motivated by this, we propose a novel dynamic correction decoding method for MLLMs DeCo, which adaptively selects the appropriate preceding layers and proportionally integrates knowledge into the final layer to adjust the output logits.
arXiv Detail & Related papers (2024-10-15T16:57:44Z) - LLM Hallucinations in Practical Code Generation: Phenomena, Mechanism, and Mitigation [33.46342144822026]
Code generation aims to automatically generate code from input requirements, significantly enhancing development efficiency.
Recent large language models (LLMs) based approaches have shown promising results and revolutionized code generation task.
Despite the promising performance, LLMs often generate contents with hallucinations, especially for the code generation scenario.
arXiv Detail & Related papers (2024-09-30T17:51:15Z) - Exploring Concept Depth: How Large Language Models Acquire Knowledge and Concept at Different Layers? [57.04803703952721]
Large language models (LLMs) have shown remarkable performances across a wide range of tasks.<n>However, the mechanisms by which these models encode tasks of varying complexities remain poorly understood.<n>We introduce the idea of "Concept Depth" to suggest that more complex concepts are typically acquired in deeper layers.
arXiv Detail & Related papers (2024-04-10T14:56:40Z) - A Survey on Large Language Model Hallucination via a Creativity
Perspective [11.31666059218344]
Hallucinations in large language models (LLMs) are always seen as limitations.
Could they also be a source of creativity?
This survey explores this possibility, suggesting that hallucinations may contribute to LLM application by fostering creativity.
arXiv Detail & Related papers (2024-02-02T12:21:04Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.