Multiaccuracy and Multicalibration via Proxy Groups
- URL: http://arxiv.org/abs/2503.02870v2
- Date: Wed, 05 Mar 2025 04:41:11 GMT
- Title: Multiaccuracy and Multicalibration via Proxy Groups
- Authors: Beepul Bharti, Mary Versa Clemens-Sewall, Paul H. Yi, Jeremias Sulam,
- Abstract summary: We show how proxy-sensitive attributes can be used to derive actionable upper bounds on the true multiaccuracy and multicalibration.<n>We also show that adjusting models to satisfy multiaccuracy and multicalibration can significantly mitigate these violations for the true, but unknown, sensitive groups.
- Score: 6.3194088379570035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the use of predictive machine learning algorithms increases in high-stakes decision-making, it is imperative that these algorithms are fair across sensitive groups. Unfortunately, measuring and enforcing fairness in real-world applications can be challenging due to missing or incomplete sensitive group data. Proxy-sensitive attributes have been proposed as a practical and effective solution in these settings, but only for parity-based fairness notions. Knowing how to evaluate and control for fairness with missing sensitive group data for newer and more flexible frameworks, such as multiaccuracy and multicalibration, remains unexplored. In this work, we address this gap by demonstrating that in the absence of sensitive group data, proxy-sensitive attributes can provably be used to derive actionable upper bounds on the true multiaccuracy and multicalibration, providing insights into a model's potential worst-case fairness violations. Additionally, we show that adjusting models to satisfy multiaccuracy and multicalibration across proxy-sensitive attributes can significantly mitigate these violations for the true, but unknown, sensitive groups. Through several experiments on real-world datasets, we illustrate that approximate multiaccuracy and multicalibration can be achieved even when sensitive group information is incomplete or unavailable.
Related papers
- Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning [49.417414031031264]
This paper studies learning fair encoders in a self-supervised learning setting.
All data are unlabeled and only a small portion of them are annotated with sensitive attributes.
arXiv Detail & Related papers (2024-06-09T08:11:12Z) - Balancing Fairness and Accuracy in Data-Restricted Binary Classification [14.439413517433891]
This paper proposes a framework that models the trade-off between accuracy and fairness under four practical scenarios.
Experiments on three datasets demonstrate the utility of the proposed framework as a tool for quantifying the trade-offs.
arXiv Detail & Related papers (2024-03-12T15:01:27Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
We aim to train models that mitigate group fairness disparity without causing harm to model accuracy.
The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes.
We propose a tractable active data sampling algorithm that does not rely on training group annotations.
arXiv Detail & Related papers (2024-02-20T07:57:38Z) - A Sequentially Fair Mechanism for Multiple Sensitive Attributes [0.46040036610482665]
In the standard use case of Algorithmic Fairness, the goal is to eliminate the relationship between a sensitive variable and a corresponding score.
We propose a sequential framework, which allows to progressively achieve fairness across a set of sensitive features.
Our approach seamlessly extends to approximate fairness, enveloping a framework accommodating the trade-off between risk and unfairness.
arXiv Detail & Related papers (2023-09-12T22:31:57Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access [12.447577504758485]
We propose a framework to train fair classifiers without access to sensitive attributes on either training or validation data.
We show theoretically and empirically that these proxy labels can be used to maximize fairness under average accuracy constraints.
arXiv Detail & Related papers (2023-02-02T19:45:50Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.