論文の概要: Political Biases on X before the 2025 German Federal Election
- arxiv url: http://arxiv.org/abs/2503.02888v1
- Date: Tue, 18 Feb 2025 03:02:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-09 04:19:00.181281
- Title: Political Biases on X before the 2025 German Federal Election
- Title(参考訳): 2025年ドイツ連邦議会選挙前、政治問題でX
- Authors: Tabia Tanzin Prama, Chhandak Bagchi, Vishal Kalakonnavar, Paul Krauß, Przemyslaw A. Grabowicz,
- Abstract要約: Xのデフォルトフィードは、他の政党よりも極右のAfDからのコンテンツが多いことがわかりました。
パーティーアフィリエイトに関連するエンゲージメント尺度と未知の要因は、Xのデフォルトアルゴリズムフィードにおける極端な表現の過剰表現に寄与する。
- 参考スコア(独自算出の注目度): 0.433530014915411
- License:
- Abstract: This study examines whether German X users would see politically balanced news feeds if they followed comparable leading politicians from each federal parliamentary party of Germany. We address this question using an algorithmic audit tool [1] and all publicly available posts published by 436 German politicians on X. We find that the default feed of X showed more content from far-right AfD than from other political parties. We analyze potential factors influencing feed content and the resulting political non-representativeness of X. Our findings suggest that engagement measures and unknown factors related to party affiliation contribute to the overrepresentation of extremes of the German political party spectrum in the default algorithmic feed of X.
- Abstract(参考訳): この研究は、ドイツのXユーザーが、各連邦議会党の政治家に匹敵する政治バランスのとれたニュースフィードを見るかどうかを調べる。
我々は、アルゴリズムによる監査ツール[1]と、X上の436人のドイツの政治家によって公開された全ての公開投稿を用いてこの問題に対処する。
我々は、X のフィード内容と結果の政治的非表現性に影響を与える潜在的な要因を分析し、X の既定のアルゴリズム的フィードにおけるドイツの政党スペクトルの極端の過剰表現に関与していることを示す。
関連論文リスト
- SpeakGer: A meta-data enriched speech corpus of German state and federal parliaments [0.12277343096128711]
SpeakGerデータセットは、1947年から2023年までのドイツ連邦議会とドイツ連邦議会の16州すべてからの議論で構成されている。
このデータセットには、聴衆からのスピーチに対する反応と、講演者のパーティー、年齢、選挙区、政党の政治的アライメントに関する情報という形で、豊富なメタデータが含まれている。
論文 参考訳(メタデータ) (2024-10-23T14:00:48Z) - On the Use of Proxies in Political Ad Targeting [49.61009579554272]
我々は、主要な政治広告主がプロキシ属性をターゲットとして緩和を回避したことを示す。
本研究は政治広告の規制に関する議論に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-10-18T17:15:13Z) - Representation Bias in Political Sample Simulations with Large Language Models [54.48283690603358]
本研究は,大規模言語モデルを用いた政治サンプルのシミュレーションにおけるバイアスの同定と定量化を目的とする。
GPT-3.5-Turboモデルを用いて、米国選挙研究、ドイツ縦割り選挙研究、ズオビアオデータセット、中国家族パネル研究のデータを活用する。
論文 参考訳(メタデータ) (2024-07-16T05:52:26Z) - L(u)PIN: LLM-based Political Ideology Nowcasting [1.124958340749622]
LLMの潜在的知識を活用することで,各議員のイデオロギー的立場を分析する手法を提案する。
この方法により、選択の軸として政治家のスタンスを評価することができ、選択の話題・論争に関して政治家のスタンスを柔軟に測定することができる。
論文 参考訳(メタデータ) (2024-05-12T16:14:07Z) - Measuring Political Bias in Large Language Models: What Is Said and How It Is Said [46.1845409187583]
政治問題に関するコンテンツの内容とスタイルの両方を分析し,LLMにおける政治的偏見を測定することを提案する。
提案尺度は, 生殖権や気候変動などの異なる政治課題を, それらのバイアスの内容(世代的物質)と様式(語彙的極性)の両方で考察する。
論文 参考訳(メタデータ) (2024-03-27T18:22:48Z) - Twits, Toxic Tweets, and Tribal Tendencies: Trends in Politically Polarized Posts on Twitter [5.161088104035108]
個人レベルでの毒性と,Twitter/X上でのトピックレベルに寄与するパーシスタンスと感情分極が果たす役割について検討する。
43,151人のTwitter/Xユーザーから8960万のツイートを収集した後、パーティショニングを含むいくつかのアカウントレベルの特徴が、ユーザーが有害コンテンツを投稿する頻度を予測するかを決定する。
論文 参考訳(メタデータ) (2023-07-19T17:24:47Z) - Diverse Perspectives Can Mitigate Political Bias in Crowdsourced Content
Moderation [5.470971742987594]
ソーシャルメディア企業は、プラットフォーム上の政治コンテンツを取り巻くコンテンツモデレーションポリシーの定義と強化に不満を抱いている。
このタスクにおいて、人間のラベルがどの程度うまく機能するか、あるいは、バイアスがこのプロセスに影響を及ぼすかどうかは不明だ。
集団労働者による政治内容の特定の実現可能性と実践性を実験的に評価した。
論文 参考訳(メタデータ) (2023-05-23T20:10:43Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
われわれは、2014年から2022年までの米国の主要メディアから、180万件のニュース記事の大規模なデータセットを使用している。
我々は、国内政治、経済問題、社会問題、外交の4つの主要なトピックに関連する、きめ細かいテーマの相違を定量化する。
以上の結果から,国内政治や社会問題においては,一定のメディア偏見が原因であることが示唆された。
論文 参考訳(メタデータ) (2023-03-28T03:31:37Z) - Computational Assessment of Hyperpartisanship in News Titles [55.92100606666497]
われわれはまず、超党派ニュースタイトル検出のための新しいデータセットを開発するために、人間の誘導する機械学習フレームワークを採用する。
全体的に右派メディアは比例的に超党派的なタイトルを使う傾向にある。
我々は、外国問題、政治システム、ニュースタイトルにおける過党主義を示唆する社会問題を含む3つの主要なトピックを識別する。
論文 参考訳(メタデータ) (2023-01-16T05:56:58Z) - Algorithmic Amplification of Politics on Twitter [17.631887805091733]
Twitterプラットフォーム上で大規模なランダム化実験を行った結果,定量的な証拠が得られた。
7カ国の政党から選出された議員によるつぶやきについて検討した。
7ヶ国中6ヶ国で、主流の政治的権利は、主流の政治的左翼よりも高いアルゴリズム的増幅を享受している。
論文 参考訳(メタデータ) (2021-10-21T09:25:39Z) - Reaching the bubble may not be enough: news media role in online
political polarization [58.720142291102135]
分極を減らす方法は、異なる政治的指向を持つ個人に党間のニュースを分配することである。
本研究は、ブラジルとカナダにおける全国選挙の文脈において、これが成立するかどうかを考察する。
論文 参考訳(メタデータ) (2021-09-18T11:34:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。