論文の概要: LINGOLY-TOO: Disentangling Memorisation from Knowledge with Linguistic Templatisation and Orthographic Obfuscation
- arxiv url: http://arxiv.org/abs/2503.02972v4
- Date: Sun, 25 May 2025 04:05:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 14:32:53.542412
- Title: LINGOLY-TOO: Disentangling Memorisation from Knowledge with Linguistic Templatisation and Orthographic Obfuscation
- Title(参考訳): lingoLY-TOO:言語的テンプレート化とorthographic Obfuscationによる知識からの覚書の抽出
- Authors: Jude Khouja, Karolina Korgul, Simi Hellsten, Lingyi Yang, Vlad Neacsu, Harry Mayne, Ryan Kearns, Andrew Bean, Adam Mahdi,
- Abstract要約: 自然言語を基盤とした挑戦的推論ベンチマークであるlingOLY-TOOを紹介する。
実言語で記述された推論問題をパーミュレートして、多数の質問のバリエーションを生成する。
実験と分析は、モデルが推論を回避し、事前の知識から回答できることを示している。
- 参考スコア(独自算出の注目度): 1.2576388595811496
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The expanding knowledge and memorisation capacity of frontier language models allows them to solve many reasoning tasks directly by exploiting prior knowledge, leading to inflated estimates of their reasoning abilities. We introduce LINGOLY-TOO, a challenging reasoning benchmark grounded in natural language and designed to counteract the effect of non-reasoning abilities on reasoning estimates. Using linguistically informed rulesets, we permute reasoning problems written in real languages to generate numerous question variations. These permutations preserve the intrinsic reasoning steps required for each solution while reducing the likelihood problems are directly solvable with models' knowledge. Experiments and analyses show that models can circumvent reasoning and answer from prior knowledge. On a metric that rewards consistent reasoning, all models perform poorly and exhibit high variance across question permutations, indicating that Large Language Models' (LLMs) reasoning faculty remains brittle. Overall, results on the benchmark reflect the recent progress of Inference-Time Compute (ITC) models but suggest ample room for further improvement. The benchmark is a step towards better measurement of reasoning abilities of LLMs and offers a cautionary tale on the importance of disentangling reasoning abilities from models' internalised knowledge when developing reasoning benchmarks.
- Abstract(参考訳): フロンティア言語モデルの知識と記憶能力の増大により、事前知識を活用することによって、多くの推論タスクを直接解決することが可能となり、推論能力の膨らみが生じる。
本稿では,自然言語を基盤とした難解な推論ベンチマークであるlingOLY-TOOを紹介する。
言語的に情報を得た規則セットを用いて、実言語で書かれた推論問題をパーミュレートし、多数の質問のバリエーションを生成する。
これらの置換は、各解に必要な本質的な推論ステップを保ちながら、モデルの知識で直接解ける可能性を減らす。
実験と分析は、モデルが推論を回避し、事前の知識から回答できることを示している。
一貫性のある推論に報いる指標では、全てのモデルは性能が悪く、質問の順列に高いばらつきを示しており、Large Language Models (LLM) の推論能力は依然として不安定であることを示している。
全体として、ベンチマークの結果は、最近のITC(Inference-Time Compute)モデルの進歩を反映しているが、さらなる改善の余地が十分にあることを示唆している。
このベンチマークは、LCMの推論能力のより良い測定に向けたステップであり、推論ベンチマークを開発する際に、モデルの内部知識から推論能力を引き離すことの重要性について注意深い物語を提供する。
関連論文リスト
- Beyond Chains of Thought: Benchmarking Latent-Space Reasoning Abilities in Large Language Models [0.0]
大規模言語モデル(LLM)は、潜在空間内と外部の両方で推論計算を行うことができる。
本研究では,異なる領域におけるモデル内部推論を定量化するベンチマークを提案する。
論文 参考訳(メタデータ) (2025-04-14T18:15:27Z) - ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models [75.05436691700572]
明示的な因果推論において,LLM(Large Language Models)を評価するための新しいデータセットであるExpliCaを紹介する。
ExpliCa上で7つの商用およびオープンソース LLM をテストしました。
驚くべきことに、モデルは因果関係と時間的関係を関連付ける傾向にあり、そのパフォーマンスはイベントの言語的順序にも強く影響される。
論文 参考訳(メタデータ) (2025-02-21T14:23:14Z) - Investigating the Robustness of Deductive Reasoning with Large Language Models [7.494617747914778]
大規模言語モデル(LLM)は多くの推論に基づく自然言語処理(NLP)タスクにおいて印象的な結果が得られることが示されている。
LLMが、非公式および自己形式化の両方の手法で、どの程度論理的推論タスクに頑健であるかは、まだ不明である。
論文 参考訳(メタデータ) (2025-02-04T17:16:51Z) - JustLogic: A Comprehensive Benchmark for Evaluating Deductive Reasoning in Large Language Models [51.99046112135311]
我々は、大言語モデルの厳密な評価のための合成推論ベンチマークであるJustLogicを紹介する。
JustLogicは非常に複雑で、多様な言語パターン、語彙、引数構造を生成することができる。
実験の結果,ほとんどのSOTA (State-of-the-art (SOTA) LLMは人体平均よりも著しく低下していることがわかった。
論文 参考訳(メタデータ) (2025-01-24T15:49:10Z) - Exploring Robustness of LLMs to Sociodemographically-Conditioned Paraphrasing [7.312170216336085]
我々は、社会デミノグラフィーの次元にまたがる幅広いバリエーションを探求するために、より広いアプローチを取る。
我々はSocialIQAデータセットを拡張し、ソシオデミノグラフィースタイルを条件とした多様なパラフレーズセットを作成する。
人口統計学的パラフレーズが言語モデルの性能に大きく影響していることが判明した。
論文 参考訳(メタデータ) (2025-01-14T17:50:06Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
本稿では、推論と批判モデルの役割を分離する2人プレイヤパラダイムを提案する。
まず、批判データを収集する自動化およびスケーラブルなフレームワークであるAutoMathCritiqueを提案する。
テスト時間における難解なクエリに対するアクターのパフォーマンスを,批判モデルが一貫して改善することが実証された。
論文 参考訳(メタデータ) (2024-11-25T17:11:54Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - LLMs are Superior Feedback Providers: Bootstrapping Reasoning for Lie Detection with Self-Generated Feedback [33.14770105185958]
大型言語モデル (LLM) は人間に似た対話やテキストの理解に優れる。
本研究では,自己生成フィードバックを活用し,嘘検出のためのLPM推論能力を向上させるブートストラップフレームワークを提案する。
本稿では,外交ゲームにおける裏切・偽装検出のためのフレームワークの適用について検討し,プロの人間プレイヤーからのフィードバックと比較する。
論文 参考訳(メタデータ) (2024-08-25T18:47:55Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
大規模な言語モデル(LLM)は、ダウンストリームタスク間で印象的なパフォーマンスを達成するために、広範囲のラベル付きデータセットとトレーニング計算を必要とすることが多い。
本稿では,LLMが独自ラベルを自動でキュレートし,未知のデータサンプルを選択的に学習する自己学習パラダイムについて検討する。
経験的評価は、複数の被験者にまたがる世代における幻覚の減少に有意な改善を示した。
論文 参考訳(メタデータ) (2024-06-17T07:25:09Z) - Prompting or Fine-tuning? Exploring Large Language Models for Causal Graph Validation [0.0]
本研究では,因果グラフの因果性を評価するための大規模言語モデルの有用性について検討する。
本研究では,(1)ゼロショットと少数ショットの因果推論のためのプロンプトベース手法,(2)因果関係予測タスクのための微調整言語モデルの比較を行った。
論文 参考訳(メタデータ) (2024-05-29T09:06:18Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-Regressive Selective Replacement Ascent (ASRA)は、決定点プロセス(DPP)と品質と類似性の両方に基づいてプロンプトを選択する離散最適化アルゴリズムである。
6種類の事前学習言語モデルに対する実験結果から,ASRAによる有害成分の抽出の有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T05:28:06Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - CRITIC: Large Language Models Can Self-Correct with Tool-Interactive
Critiquing [139.77117915309023]
CRITICは、大規模な言語モデルに対して、ツールとのヒューマンインタラクションに似た方法で、自分たちのアウトプットの検証と修正を可能にする。
自由形式の質問応答、数学的プログラム合成、毒性低減を含む包括的評価は、CRITICがLLMの性能を一貫して向上することを証明している。
論文 参考訳(メタデータ) (2023-05-19T15:19:44Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。