論文の概要: HARP 2.0: Expanding Hosted, Asynchronous, Remote Processing for Deep Learning in the DAW
- arxiv url: http://arxiv.org/abs/2503.02977v1
- Date: Tue, 04 Mar 2025 20:01:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 17:18:40.649705
- Title: HARP 2.0: Expanding Hosted, Asynchronous, Remote Processing for Deep Learning in the DAW
- Title(参考訳): HARP 2.0:DAWにおけるディープラーニングのためのホスト型、非同期、リモート処理の拡張
- Authors: Christodoulos Benetatos, Frank Cwitkowitz, Nathan Pruyne, Hugo Flores Garcia, Patrick O'Reilly, Zhiyao Duan, Bryan Pardo,
- Abstract要約: HARP 2.0は、ホストされた非同期のリモート処理を通じて、ディープラーニングモデルをデジタルオーディオワークステーション(DAW)に導入する。
任意の変換を実行するために、プラグインインターフェースから任意のGradioエンドポイントを介してオーディオをルーティングすることができる。
- 参考スコア(独自算出の注目度): 18.32614229984195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: HARP 2.0 brings deep learning models to digital audio workstation (DAW) software through hosted, asynchronous, remote processing, allowing users to route audio from a plug-in interface through any compatible Gradio endpoint to perform arbitrary transformations. HARP renders endpoint-defined controls and processed audio in-plugin, meaning users can explore a variety of cutting-edge deep learning models without ever leaving the DAW. In the 2.0 release we introduce support for MIDI-based models and audio/MIDI labeling models, provide a streamlined pyharp Python API for model developers, and implement numerous interface and stability improvements. Through this work, we hope to bridge the gap between model developers and creatives, improving access to deep learning models by seamlessly integrating them into DAW workflows.
- Abstract(参考訳): HARP 2.0は、ホストされた非同期のリモート処理を通じて、デジタルオーディオワークステーション(DAW)ソフトウェアにディープラーニングモデルをもたらす。
HARPはエンドポイント定義コントロールと処理されたオーディオインプラグをレンダリングするので、DAWを離れることなく、さまざまな最先端のディープラーニングモデルを探索することができる。
2.0リリースでは、MIDIベースのモデルとオーディオ/MIDIラベリングモデルのサポート、モデル開発者のための合理化されたpyharp Python APIの提供、多数のインターフェースと安定性の改善を実装しています。
この作業を通じて、モデル開発者とクリエイティブのギャップを埋め、DAWワークフローにシームレスに統合することで、ディープラーニングモデルへのアクセスを改善したいと思っています。
関連論文リスト
- Designing Neural Synthesizers for Low-Latency Interaction [8.27756937768806]
対話型ニューラルオーディオ合成(NAS)モデルで典型的に見られる遅延源とジッタについて検討する。
次に、この解析を畳み込み変分オートエンコーダであるRAVEを用いて音色伝達のタスクに適用する。
これは、私たちがBRAVEと呼ぶ低レイテンシで、ピッチと大音量の再現性が向上したモデルで終わる。
論文 参考訳(メタデータ) (2025-03-14T16:30:31Z) - AudioX: Diffusion Transformer for Anything-to-Audio Generation [72.84633243365093]
AudioXはAnything-to-Audio and Music Generation用の統合拡散トランスフォーマーモデルである。
オーディオと音楽の両方を高品質で生成でき、柔軟性のある自然言語コントロールを提供する。
データ不足に対処するため、VGGSoundデータセットに基づく190Kの音声キャプションを持つvggsound-capと、V2Mデータセットから派生した600万の音楽キャプションを持つV2M-capの2つのデータセットをキュレートする。
論文 参考訳(メタデータ) (2025-03-13T16:30:59Z) - InspireMusic: Integrating Super Resolution and Large Language Model for High-Fidelity Long-Form Music Generation [43.690876909464336]
InspireMusicは,高忠実度長大な音楽生成のためのフレームワーク統合スーパーレゾリューションと大規模言語モデルである。
統合されたフレームワークは、超解像フローマッチングモデルを備えた自己回帰変換器を組み込んだ高忠実な音楽、歌、オーディオを生成する。
我々のモデルは、よりリッチなセマンティック情報を含む1つのコードブックを持つオーディオトークンーを使用するため、従来のアプローチと異なる。
論文 参考訳(メタデータ) (2025-02-28T09:58:25Z) - Music Genre Classification using Large Language Models [50.750620612351284]
本稿では,音楽ジャンル分類のための事前学習された大規模言語モデル(LLM)のゼロショット機能を利用する。
提案手法は、音声信号を20ミリ秒のチャンクに分割し、畳み込み特徴エンコーダで処理する。
推論中、個々のチャンクの予測は最終ジャンル分類のために集約される。
論文 参考訳(メタデータ) (2024-10-10T19:17:56Z) - Multi-Source Music Generation with Latent Diffusion [7.832209959041259]
マルチソース拡散モデル (Multi-Source Diffusion Model, MDM) は、複数の音源の混合として音楽をモデル化することを提案した。
MSLDMは変分オートエンコーダ(VAE)を使用して、各機器のソースを別個の潜在表現にエンコードする。
このアプローチは音楽の総生成と部分生成を大幅に強化する。
論文 参考訳(メタデータ) (2024-09-10T03:41:10Z) - Frieren: Efficient Video-to-Audio Generation Network with Rectified Flow Matching [51.70360630470263]
Video-to-audio (V2A) は、サイレントビデオからコンテンツマッチング音声を合成することを目的としている。
本稿では,修正フローマッチングに基づくV2AモデルであるFrierenを提案する。
実験により、フリーレンは世代品質と時間的アライメントの両方で最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-06-01T06:40:22Z) - Foundational GPT Model for MEG [3.524869467682149]
本研究では,脳信号の予測を用いて学習可能な2種類のディープラーニング基礎モデルを提案する。
まず、改良されたWavenetを検討し、次に、改良されたTransformer-based (GPT2)モデルを検討する。
我々は,これらのディープラーニングモデルの性能を,MEGデータに基づく標準的な線形自己回帰(AR)モデルと比較する。
論文 参考訳(メタデータ) (2024-04-14T13:48:24Z) - ESPnet-SPK: full pipeline speaker embedding toolkit with reproducible recipes, self-supervised front-ends, and off-the-shelf models [51.35570730554632]
ESPnet-SPKは、話者埋め込み抽出器を訓練するためのツールキットである。
我々は、x-vectorから最近のSKA-TDNNまで、いくつかのモデルを提供している。
開発モデルと他のドメインとの橋渡しも目指しています。
論文 参考訳(メタデータ) (2024-01-30T18:18:27Z) - MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training [74.32603591331718]
本稿では,MLMスタイルの音響事前学習において,教師モデルと擬似ラベルを組み込んだ大規模自己教師型学習(MERT)を用いた音響音楽理解モデルを提案する。
実験結果から,本モデルでは14曲の楽曲理解タスクを一般化し,性能を向上し,SOTA(State-of-the-art)全体のスコアを達成できることが示唆された。
論文 参考訳(メタデータ) (2023-05-31T18:27:43Z) - Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion
Models [65.18102159618631]
マルチモーダル生成モデリングは、テキスト・ツー・イメージとテキスト・ツー・ビデオ生成においてマイルストーンを生み出した。
高品質のテキストオーディオペアを備えた大規模データセットの欠如、長期連続的なオーディオデータのモデリングの複雑さ、という2つの主な理由から、オーディオへの適用は依然として遅れている。
本稿では,これらのギャップに対処する急激な拡散モデルを用いたMake-An-Audioを提案する。
論文 参考訳(メタデータ) (2023-01-30T04:44:34Z) - Real-time Timbre Transfer and Sound Synthesis using DDSP [1.7942265700058984]
プラグインとして仮想シンセサイザーに埋め込まれたMagentaPライブラリのリアルタイム実装を紹介します。
実楽器の学習表現から任意の音響入力への音色伝達とMIDIによるこれらのモデル制御に着目した。
ニューラルネットワークによって推定されるパラメータの処理と操作に使用できる直感的な高レベル制御のためのGUIを開発した。
論文 参考訳(メタデータ) (2021-03-12T11:49:51Z) - Towards democratizing music production with AI-Design of Variational
Autoencoder-based Rhythm Generator as a DAW plugin [0.0]
本稿では,変分オートエンコーデットKingma2014(VAE)に基づくリズム生成システムを提案する。
ミュージシャンは、ターゲットMIDIファイルを選択してのみディープラーニングモデルをトレーニングし、モデルでさまざまなリズムを生成することができる。
論文 参考訳(メタデータ) (2020-04-01T10:50:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。