論文の概要: Towards democratizing music production with AI-Design of Variational
Autoencoder-based Rhythm Generator as a DAW plugin
- arxiv url: http://arxiv.org/abs/2004.01525v1
- Date: Wed, 1 Apr 2020 10:50:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 19:36:43.822762
- Title: Towards democratizing music production with AI-Design of Variational
Autoencoder-based Rhythm Generator as a DAW plugin
- Title(参考訳): dawプラグインとしての可変オートエンコーダ型リズムジェネレータのai設計による音楽制作の民主化に向けて
- Authors: Nao Tokui
- Abstract要約: 本稿では,変分オートエンコーデットKingma2014(VAE)に基づくリズム生成システムを提案する。
ミュージシャンは、ターゲットMIDIファイルを選択してのみディープラーニングモデルをトレーニングし、モデルでさまざまなリズムを生成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been significant progress in the music generation technique
utilizing deep learning. However, it is still hard for musicians and artists to
use these techniques in their daily music-making practice. This paper proposes
a Variational Autoencoder\cite{Kingma2014}(VAE)-based rhythm generation system,
in which musicians can train a deep learning model only by selecting target
MIDI files, then generate various rhythms with the model. The author has
implemented the system as a plugin software for a DAW (Digital Audio
Workstation), namely a Max for Live device for Ableton Live. Selected
professional/semi-professional musicians and music producers have used the
plugin, and they proved that the plugin is a useful tool for making music
creatively. The plugin, source code, and demo videos are available online.
- Abstract(参考訳): 深層学習を利用した音楽生成技術は大きな進歩を遂げている。
しかし、ミュージシャンやアーティストが日々の音楽制作にこれらの技法を使うことは依然として困難である。
本稿では,音楽家たちがMIDIファイルを選択するだけで深層学習モデルを訓練し,そのモデルで様々なリズムを生成できる変動型オートエンコーダ(VAE)ベースのリズム生成システムを提案する。
著者らはDAW(Digital Audio Workstation)のプラグインソフトウェアとして,Ableton Live用のMax for Liveデバイスとして実装した。
プロ/セミプロのミュージシャンや音楽プロデューサーがプラグインを使っており、このプラグインは音楽を創造的にするための便利なツールであることが証明された。
プラグイン、ソースコード、デモビデオはオンラインで入手できる。
関連論文リスト
- Arrange, Inpaint, and Refine: Steerable Long-term Music Audio Generation and Editing via Content-based Controls [6.176747724853209]
LLM(Large Language Models)は、高品質な音楽を生成する上で有望であるが、自動回帰生成に焦点をあてることで、音楽編集タスクにおける有用性を制限している。
本稿では,パラメータ効率の高いヘテロジニアスアダプタとマスキングトレーニングスキームを組み合わせた新しいアプローチを提案する。
提案手法は, フレームレベルのコンテンツベース制御を統合し, トラックコンディショニングとスコアコンディショニングによる音楽アレンジメントを容易にする。
論文 参考訳(メタデータ) (2024-02-14T19:00:01Z) - Exploring Musical Roots: Applying Audio Embeddings to Empower Influence
Attribution for a Generative Music Model [6.476298483207895]
そこで我々は,学習データの属性を理解するのに有用な方法で,類似した楽曲を識別する手法を開発した。
VampNetのトレーニングに使用した500万本のオーディオクリップにおいて,CLMRとCLAPの埋め込みを類似度測定と比較した。
この作業は、自動的なインフルエンス属性を生成モデルに組み込むことで、モデル作成者とユーザが無知な予算から情報生成に移行することを約束する。
論文 参考訳(メタデータ) (2024-01-25T22:20:42Z) - MusicAgent: An AI Agent for Music Understanding and Generation with
Large Language Models [54.55063772090821]
MusicAgentは、多数の音楽関連ツールと、ユーザの要求に対処するための自律ワークフローを統合している。
このシステムの第一の目的は、AI音楽ツールの複雑さからユーザーを解放し、クリエイティブな側面に集中できるようにすることである。
論文 参考訳(メタデータ) (2023-10-18T13:31:10Z) - MARBLE: Music Audio Representation Benchmark for Universal Evaluation [79.25065218663458]
我々は,UniversaL Evaluation(MARBLE)のための音楽音響表現ベンチマークを紹介する。
音響、パフォーマンス、スコア、ハイレベルな記述を含む4つの階層レベルを持つ包括的分類を定義することで、様々な音楽情報検索(MIR)タスクのベンチマークを提供することを目的としている。
次に、8つの公開データセット上の14のタスクに基づいて統一されたプロトコルを構築し、ベースラインとして音楽録音で開発されたすべてのオープンソース事前学習モデルの表現を公平かつ標準的に評価する。
論文 参考訳(メタデータ) (2023-06-18T12:56:46Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - Music Representing Corpus Virtual: An Open Sourced Library for
Explorative Music Generation, Sound Design, and Instrument Creation with
Artificial Intelligence and Machine Learning [0.0]
Music Representing Corpus Virtual (MRCV) は、音楽生成、サウンドデザイン、仮想機器作成(MGSDIC)における人工知能(AI)と機械学習(ML)の能力を探求するオープンソースソフトウェアスイートである。
MRCVの主な目的は、創造性を促進することであり、ユーザーはニューラルネットワークをトレーニングするための入力データセットをカスタマイズし、ニューラルネットワーク毎にさまざまなオプションを提供することができる。
ソフトウェアはオープンソースであり、ユーザーは開発に貢献でき、コミュニティは他のユーザの洞察や経験から一括して恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-05-24T09:36:04Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - LyricJam Sonic: A Generative System for Real-Time Composition and
Musical Improvisation [13.269034230828032]
LyricJam Sonicは、ミュージシャンが以前の録音を再発見し、他の録音とテクスチャ化し、オリジナル音楽の作曲をリアルタイムで作成するための新しいツールである。
バイモーダルAI駆動のアプローチでは、生成された歌詞行を使用して、アーティストの過去のスタジオ録音から一致するオーディオクリップを見つける。
アーティストたちは、過去の音声セグメントを意図的に探すという分析的・批判的な状態に陥るのではなく、音楽制作に創造的な流れを保とうとしている。
論文 参考訳(メタデータ) (2022-10-27T17:27:58Z) - The Piano Inpainting Application [0.0]
生成アルゴリズムは、提供された制御の制限、推論の禁止、ミュージシャンの生成への統合の欠如のために、依然としてアーティストによって広く使われていない。
本稿では,ピアノ演奏のインペインティングに着目した生成モデルであるピアノ・インペインティング・アプリケーション(PIA)について述べる。
論文 参考訳(メタデータ) (2021-07-13T09:33:11Z) - Unsupervised Cross-Domain Singing Voice Conversion [105.1021715879586]
任意の同一性から音声変換を行うタスクに対して,wav-to-wav生成モデルを提案する。
提案手法は,自動音声認識のタスクのために訓練された音響モデルとメロディ抽出機能の両方を用いて波形ベースジェネレータを駆動する。
論文 参考訳(メタデータ) (2020-08-06T18:29:11Z) - Foley Music: Learning to Generate Music from Videos [115.41099127291216]
Foley Musicは、楽器を演奏する人々に関するサイレントビデオクリップのために、可愛らしい音楽を合成できるシステムだ。
まず、ビデオから音楽生成に成功するための2つの重要な中間表現、すなわち、ビデオからのボディーキーポイントと、オーディオ録音からのMIDIイベントを識別する。
身体の動きに応じてMIDIイベントシーケンスを正確に予測できるグラフ$-$Transformerフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-21T17:59:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。