Exploring Neural Ordinary Differential Equations as Interpretable Healthcare classifiers
- URL: http://arxiv.org/abs/2503.03129v1
- Date: Wed, 05 Mar 2025 02:51:50 GMT
- Title: Exploring Neural Ordinary Differential Equations as Interpretable Healthcare classifiers
- Authors: Shi Li,
- Abstract summary: This study introduces a interpretable approach using neural network models that exploit the dynamics of differential equations for representation learning.<n>The primary objective of this research is to propose a novel architecture for groups like healthcare that require the predictive capabilities of deep learning.
- Score: 4.328251587746188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning has emerged as one of the most significant innovations in machine learning. However, a notable limitation of this field lies in the ``black box" decision-making processes, which have led to skepticism within groups like healthcare and scientific communities regarding its applicability. In response, this study introduces a interpretable approach using Neural Ordinary Differential Equations (NODEs), a category of neural network models that exploit the dynamics of differential equations for representation learning. Leveraging their foundation in differential equations, we illustrate the capability of these models to continuously process textual data, marking the first such model of its kind, and thereby proposing a promising direction for future research in this domain. The primary objective of this research is to propose a novel architecture for groups like healthcare that require the predictive capabilities of deep learning while emphasizing the importance of model transparency demonstrated in NODEs.
Related papers
- High-order expansion of Neural Ordinary Differential Equations flows [4.4569182855550755]
We introduce Event Transitions, a framework based on high-order differentials that provides a rigorous mathematical description of neural ODE dynamics on event gradient.
Our findings contribute to a deeper theoretical foundation for event-triggered neural differential equations and provide a mathematical construct for explaining complex system dynamics.
arXiv Detail & Related papers (2025-04-02T08:57:34Z) - Latent Variable Sequence Identification for Cognitive Models with Neural Network Estimators [7.7227297059345466]
We present an approach that extends neural Bayes estimation to learn a direct mapping between experimental data and the targeted latent variable space.<n>Our work underscores that combining recurrent neural networks and simulation-based inference to identify latent variable sequences can enable researchers to access a wider class of cognitive models.
arXiv Detail & Related papers (2024-06-20T21:13:39Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
The aim of this thesis is to understand the effectiveness of Unlearning in both associative memory models and generative models.
The selection of structured data enables an associative memory model to retrieve concepts as attractors of a neural dynamics with considerable basins of attraction.
A novel regularization technique for Boltzmann Machines is presented, proving to outperform previously developed methods in learning hidden probability distributions from data-sets.
arXiv Detail & Related papers (2024-03-04T23:12:42Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Stable Attractors for Neural networks classification via Ordinary Differential Equations (SA-nODE) [0.9786690381850358]
A priori is constructed to accommodate a set of pre-assigned stationary stable attractors.
The inherent ability to perform classification is reflected in the shaped basin of attractions associated to each of the target stable attractors.
Although this method does not reach the performance of state-of-the-art deep learning algorithms, it illustrates that continuous dynamical systems with closed analytical interaction terms can serve as high-performance classifiers.
arXiv Detail & Related papers (2023-11-17T08:30:41Z) - Deep Learning-based Analysis of Basins of Attraction [49.812879456944984]
This research addresses the challenge of characterizing the complexity and unpredictability of basins within various dynamical systems.
The main focus is on demonstrating the efficiency of convolutional neural networks (CNNs) in this field.
arXiv Detail & Related papers (2023-09-27T15:41:12Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - Computational model discovery with reinforcement learning [3.005240085945858]
The motivation of this study is to leverage recent breakthroughs in artificial intelligence research to unlock novel solutions to scientific problems encountered in computational science.
To address the human intelligence limitations in discovering reduced-order models, we propose to supplement human thinking with artificial intelligence.
arXiv Detail & Related papers (2019-12-29T22:56:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.