論文の概要: An Analytical Theory of Power Law Spectral Bias in the Learning Dynamics of Diffusion Models
- arxiv url: http://arxiv.org/abs/2503.03206v1
- Date: Wed, 05 Mar 2025 05:50:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:53:51.680078
- Title: An Analytical Theory of Power Law Spectral Bias in the Learning Dynamics of Diffusion Models
- Title(参考訳): 拡散モデルの学習力学におけるパワーロースペクトルバイアスの解析理論
- Authors: Binxu Wang,
- Abstract要約: 拡散モデル学習中に学習した分布がどのように進化するかを理解するための分析フレームワークを開発した。
任意のデータを用いた1層または2層線形デノイザ設定における重みの勾配-流れの正確な解を導出した。
これらの解により、閉形式で生成された分布とKLの発散を訓練によって導出できる。
- 参考スコア(独自算出の注目度): 2.1756081703276
- License:
- Abstract: We developed an analytical framework for understanding how the learned distribution evolves during diffusion model training. Leveraging the Gaussian equivalence principle, we derived exact solutions for the gradient-flow dynamics of weights in one- or two-layer linear denoiser settings with arbitrary data. Remarkably, these solutions allowed us to derive the generated distribution in closed form and its KL divergence through training. These analytical results expose a pronounced power-law spectral bias, i.e., for weights and distributions, the convergence time of a mode follows an inverse power law of its variance. Empirical experiments on both Gaussian and image datasets demonstrate that the power-law spectral bias remains robust even when using deeper or convolutional architectures. Our results underscore the importance of the data covariance in dictating the order and rate at which diffusion models learn different modes of the data, providing potential explanations for why earlier stopping could lead to incorrect details in image generative models.
- Abstract(参考訳): 拡散モデル学習中に学習した分布がどのように進化するかを理解するための分析フレームワークを開発した。
ガウス同値原理を応用して、任意のデータを用いた1層または2層線形デノイザ設定における重みの勾配-フローダイナミクスの正確な解を導出した。
顕著なことに、これらの解は、閉形式の生成分布と、トレーニングによるKLの発散を導出することを可能にする。
これらの分析結果は明らかなパワーロースペクトルバイアス、すなわち重みと分布に対して、モードの収束時間は、その分散の逆パワー則に従う。
ガウス的およびイメージ的両方のデータセットに関する実証実験は、より深いアーキテクチャや畳み込みアーキテクチャを用いても、パワーロースペクトルバイアスが頑健であることを示した。
この結果から,拡散モデルがデータの異なるモードを学習する順序や速度を決定する上で,データ共分散の重要性が示唆された。
関連論文リスト
- Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure [8.320632531909682]
学習したスコア関数の隠れた性質を調べた結果,拡散モデルの一般化可能性について検討した。
拡散モデルが記憶から一般化へと遷移するにつれて、対応する非線形拡散デノイザは線形性を増加させる。
論文 参考訳(メタデータ) (2024-10-31T15:57:04Z) - On the Relation Between Linear Diffusion and Power Iteration [42.158089783398616]
相関機械として生成過程を研究する」
生成過程の早い段階で低周波が出現し, 固有値に依存する速度で, 偏極基底ベクトルが真のデータにより整合していることが示される。
このモデルにより、線形拡散モデルが、一般的な電力反復法と同様に、基礎データの先頭固有ベクトルに平均的に収束することを示すことができる。
論文 参考訳(メタデータ) (2024-10-16T07:33:12Z) - How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework [11.71206628091551]
L'evy型積分に基づく離散拡散モデルの誤差解析のための包括的フレームワークを提案する。
我々のフレームワークは、離散拡散モデルにおける現在の理論結果を統一し、強化する。
論文 参考訳(メタデータ) (2024-10-04T16:59:29Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - Information-Theoretic Diffusion [18.356162596599436]
拡散モデルのデノイングは密度モデリングや画像生成において大きな進歩をもたらした。
情報理論における古典的な結果にインスパイアされた拡散モデルのための新しい数学的基礎を導入する。
論文 参考訳(メタデータ) (2023-02-07T23:03:07Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。