AI-Driven Multi-Stage Computer Vision System for Defect Detection in Laser-Engraved Industrial Nameplates
- URL: http://arxiv.org/abs/2503.03395v1
- Date: Wed, 05 Mar 2025 11:19:17 GMT
- Title: AI-Driven Multi-Stage Computer Vision System for Defect Detection in Laser-Engraved Industrial Nameplates
- Authors: Adhish Anitha Vilasan, Stephan Jäger, Noah Klarmann,
- Abstract summary: This paper presents a proof of concept for an AI-driven computer vision system that inspects and verifies laser-engraved nameplates.<n>The system achieves 91.33% accuracy and 100% recall, ensuring that defective nameplates are consistently detected and addressed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automated defect detection in industrial manufacturing is essential for maintaining product quality and minimizing production errors. In air disc brake manufacturing, ensuring the precision of laser-engraved nameplates is crucial for accurate product identification and quality control. Engraving errors, such as misprints or missing characters, can compromise both aesthetics and functionality, leading to material waste and production delays. This paper presents a proof of concept for an AI-driven computer vision system that inspects and verifies laser-engraved nameplates, detecting defects in logos and alphanumeric strings. The system integrates object detection using YOLOv7, optical character recognition (OCR) with Tesseract, and anomaly detection through a residual variational autoencoder (ResVAE) along with other computer vision methods to enable comprehensive inspections at multiple stages. Experimental results demonstrate the system's effectiveness, achieving 91.33% accuracy and 100% recall, ensuring that defective nameplates are consistently detected and addressed. This solution highlights the potential of AI-driven visual inspection to enhance quality control, reduce manual inspection efforts, and improve overall manufacturing efficiency.
Related papers
- NeRF-Based defect detection [6.72800891299482]
This paper introduces an automated defect detection framework built on Neural Radiance Fields (NeRF) and the concept of digital twins.
The system utilizes UAVs to capture images and reconstruct 3D models of machinery, producing both a standard reference model and a current-state model for comparison.
arXiv Detail & Related papers (2025-03-31T22:27:51Z) - Defect Detection Network In PCB Circuit Devices Based on GAN Enhanced YOLOv11 [1.6775954077761863]
This study proposes an advanced method for surface defect detection in printed circuit boards (PCBs) using an improved YOLOv11 model enhanced with a generative adversarial network (GAN)<n>The approach focuses on identifying six common defect types: missing hole, rat bite, open circuit, short circuit, burr, and virtual welding.<n>The enhanced YOLOv11 model is evaluated on a PCB defect dataset, demonstrating significant improvements in accuracy, recall, and robustness.
arXiv Detail & Related papers (2025-01-12T17:26:24Z) - Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection [56.66677293607114]
We propose Code-as-Monitor (CaM) for both open-set reactive and proactive failure detection.<n>To enhance the accuracy and efficiency of monitoring, we introduce constraint elements that abstract constraint-related entities.<n>Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances.
arXiv Detail & Related papers (2024-12-05T18:58:27Z) - Scalable AI Framework for Defect Detection in Metal Additive Manufacturing [2.303463009749888]
We leverage convolutional neural networks (CNN) to analyze thermal images of printed layers, automatically identifying anomalies that impact these properties.
Our work integrates these models in the CLoud ADditive MAnufacturing (CLADMA) module to enhance their accessibility and practicality for AM applications.
arXiv Detail & Related papers (2024-11-01T18:17:59Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - LLM-3D Print: Large Language Models To Monitor and Control 3D Printing [6.349503549199403]
Industry 4.0 has revolutionized manufacturing by driving digitalization and shifting the paradigm toward additive manufacturing (AM)
FDM, a key AM technology, enables the creation of highly customized, cost-effective products with minimal material waste through layer-by-layer extrusion.
We present a process monitoring and control framework that leverages pre-trained Large Language Models (LLMs) alongside 3D printers to detect and address printing defects.
arXiv Detail & Related papers (2024-08-26T14:38:19Z) - On the Vulnerability of LLM/VLM-Controlled Robotics [54.57914943017522]
We highlight vulnerabilities in robotic systems integrating large language models (LLMs) and vision-language models (VLMs) due to input modality sensitivities.
Our results show that simple input perturbations reduce task execution success rates by 22.2% and 14.6% in two representative LLM/VLM-controlled robotic systems.
arXiv Detail & Related papers (2024-02-15T22:01:45Z) - Autoencoder-Based Visual Anomaly Localization for Manufacturing Quality
Control [0.0]
This paper proposes a defect localizing autoencoder with unsupervised class selection.
The selected classes of defects are augmented with natural wild textures to simulate artificial defects.
The proposed methodology shows promising results with precise and accurate localization of quality defects on melamine-faced boards for the furniture industry.
arXiv Detail & Related papers (2023-09-13T11:18:15Z) - SolderNet: Towards Trustworthy Visual Inspection of Solder Joints in
Electronics Manufacturing Using Explainable Artificial Intelligence [70.60433013657693]
In electronics manufacturing, solder joint defects are a common problem affecting a variety of printed circuit board components.
To identify and correct solder joint defects, the solder joints on a circuit board are typically inspected manually by trained human inspectors.
In this work we describe an explainable deep learning-based visual quality inspection system tailored for visual inspection of solder joints.
arXiv Detail & Related papers (2022-11-18T15:02:59Z) - In situ process quality monitoring and defect detection for direct metal
laser melting [0.0]
In-process fault detection and part quality prediction can be readily deployed on existing commercial DMLM systems.
A Bayesian approach attributes measurements to one of multiple process states and a least squares regression model predicts severity of certain material defects.
arXiv Detail & Related papers (2021-12-03T14:05:31Z) - TinyDefectNet: Highly Compact Deep Neural Network Architecture for
High-Throughput Manufacturing Visual Quality Inspection [72.88856890443851]
TinyDefectNet is a highly compact deep convolutional network architecture tailored for high- throughput manufacturing visual quality inspection.
TinyDefectNet was deployed on an AMD EPYC 7R32, and achieved 7.6x faster throughput using the nativeflow environment and 9x faster throughput using AMD ZenDNN accelerator library.
arXiv Detail & Related papers (2021-11-29T04:19:28Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
This paper discloses a novel visual inspection system for liquid crystal display (LCD), which is currently a dominant type in the FPD industry.
System is based on two cornerstones: robust/high-performance defect recognition model and cognitive visual inspection service architecture.
arXiv Detail & Related papers (2021-01-11T08:14:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.