Enhancing Glass Defect Detection with Diffusion Models: Addressing Imbalanced Datasets in Manufacturing Quality Control
- URL: http://arxiv.org/abs/2505.03134v3
- Date: Tue, 29 Jul 2025 04:21:09 GMT
- Title: Enhancing Glass Defect Detection with Diffusion Models: Addressing Imbalanced Datasets in Manufacturing Quality Control
- Authors: Sajjad Rezvani Boroujeni, Hossein Abedi, Tom Bush,
- Abstract summary: This paper presents a novel approach using Denoising Diffusion Probabilistic Models (DDPMs) to generate synthetic defective glass product images for data augmentation.<n>The methodology significantly enhances image classification performance of standard CNN architectures.<n>The most dramatic improvement was observed in ResNet50V2's overall classification accuracy, which increased from 78% to 93% when trained with the augmented data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual defect detection in industrial glass manufacturing remains a critical challenge due to the low frequency of defective products, leading to imbalanced datasets that limit the performance of deep learning models and computer vision systems. This paper presents a novel approach using Denoising Diffusion Probabilistic Models (DDPMs) to generate synthetic defective glass product images for data augmentation, effectively addressing class imbalance issues in manufacturing quality control and automated visual inspection. The methodology significantly enhances image classification performance of standard CNN architectures (ResNet50V2, EfficientNetB0, and MobileNetV2) in detecting anomalies by increasing the minority class representation. Experimental results demonstrate substantial improvements in key machine learning metrics, particularly in recall for defective samples across all tested deep neural network architectures while maintaining perfect precision on the validation set. The most dramatic improvement was observed in ResNet50V2's overall classification accuracy, which increased from 78\% to 93\% when trained with the augmented data. This work provides a scalable, cost-effective approach to enhancing automated defect detection in glass manufacturing that can potentially be extended to other industrial quality assurance systems and industries with similar class imbalance challenges.
Related papers
- Wafer Map Defect Classification Using Autoencoder-Based Data Augmentation and Convolutional Neural Network [4.8748194765816955]
This study proposes a novel method combining a self-encoder-based data augmentation technique with a convolutional neural network (CNN)
The proposed method achieves a classification accuracy of 98.56%, surpassing Random Forest, SVM, and Logistic Regression by 19%, 21%, and 27%, respectively.
arXiv Detail & Related papers (2024-11-17T10:19:54Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Utilizing Generative Adversarial Networks for Image Data Augmentation and Classification of Semiconductor Wafer Dicing Induced Defects [0.21990652930491852]
In semiconductor manufacturing, the wafer dicing process is central yet vulnerable to defects that significantly impair yield.
Deep neural networks are the current state of the art in (semi-)automated visual inspection.
We explore the application of generative adversarial networks (GAN) for image data augmentation and classification of semiconductor wafer dicing induced defects.
arXiv Detail & Related papers (2024-07-24T20:44:16Z) - DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries [0.0]
This technology excels in precisely identifying faults by extracting intricate details from product photographs.
The project leverages a deep learning framework to automate real-time flaw detection in the manufacturing process.
arXiv Detail & Related papers (2023-11-07T04:59:43Z) - Autoencoder-Based Visual Anomaly Localization for Manufacturing Quality
Control [0.0]
This paper proposes a defect localizing autoencoder with unsupervised class selection.
The selected classes of defects are augmented with natural wild textures to simulate artificial defects.
The proposed methodology shows promising results with precise and accurate localization of quality defects on melamine-faced boards for the furniture industry.
arXiv Detail & Related papers (2023-09-13T11:18:15Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
This paper examines two scenarios: first, using convolutional neural networks (CNNs) to accurately classify defects in an image dataset from AM and second, applying active learning techniques to the developed classification model.
This allows the construction of a human-in-the-loop mechanism to reduce the size of the data required to train and generate training data.
arXiv Detail & Related papers (2023-07-14T14:36:58Z) - Synthetic Data Augmentation Using GAN For Improved Automated Visual
Inspection [0.440401067183266]
State-of-the-art unsupervised defect detection does not match the performance of supervised models.
Best classification performance was achieved considering GAN-based data generation with AUC ROC scores equal to or higher than 0,9898.
arXiv Detail & Related papers (2022-12-19T09:31:15Z) - Recognition of Defective Mineral Wool Using Pruned ResNet Models [88.24021148516319]
We developed a visual quality control system for mineral wool.
X-ray images of wool specimens were collected to create a training set of defective and non-defective samples.
We obtained a model with more than 98% accuracy, which in comparison to the current procedure used at the company, it can recognize 20% more defective products.
arXiv Detail & Related papers (2022-11-01T13:58:02Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
We propose a model fusing weak supervision and generative adversarial networks.
It captures discrete variables in the data alongside the weak supervision derived label estimate.
It is the first approach to enable data augmentation through weakly supervised synthetic images and pseudolabels.
arXiv Detail & Related papers (2022-03-22T20:24:21Z) - Improving robustness against common corruptions with frequency biased
models [112.65717928060195]
unseen image corruptions can cause a surprisingly large drop in performance.
Image corruption types have different characteristics in the frequency spectrum and would benefit from a targeted type of data augmentation.
We propose a new regularization scheme that minimizes the total variation (TV) of convolution feature-maps to increase high-frequency robustness.
arXiv Detail & Related papers (2021-03-30T10:44:50Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
This paper discloses a novel visual inspection system for liquid crystal display (LCD), which is currently a dominant type in the FPD industry.
System is based on two cornerstones: robust/high-performance defect recognition model and cognitive visual inspection service architecture.
arXiv Detail & Related papers (2021-01-11T08:14:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.