DTU-Net: A Multi-Scale Dilated Transformer Network for Nonlinear Hyperspectral Unmixing
- URL: http://arxiv.org/abs/2503.03465v2
- Date: Thu, 06 Mar 2025 02:55:33 GMT
- Title: DTU-Net: A Multi-Scale Dilated Transformer Network for Nonlinear Hyperspectral Unmixing
- Authors: ChenTong Wang, Jincheng Gao, Fei Zhu, Abderrahim Halimi, Cédric Richard,
- Abstract summary: We propose a Dilated Transformer-based unmixing network for nonlinear hyperspectral unmixing.<n>The decoder is designed to accommodate both linear and nonlinear mixing scenarios.<n>Its interpretability is enhanced by explicitly modeling the relationships between endmembers, abundances, and nonlinear coefficients.
- Score: 16.19039818961399
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transformers have shown significant success in hyperspectral unmixing (HU). However, challenges remain. While multi-scale and long-range spatial correlations are essential in unmixing tasks, current Transformer-based unmixing networks, built on Vision Transformer (ViT) or Swin-Transformer, struggle to capture them effectively. Additionally, current Transformer-based unmixing networks rely on the linear mixing model, which lacks the flexibility to accommodate scenarios where nonlinear effects are significant. To address these limitations, we propose a multi-scale Dilated Transformer-based unmixing network for nonlinear HU (DTU-Net). The encoder employs two branches. The first one performs multi-scale spatial feature extraction using Multi-Scale Dilated Attention (MSDA) in the Dilated Transformer, which varies dilation rates across attention heads to capture long-range and multi-scale spatial correlations. The second one performs spectral feature extraction utilizing 3D-CNNs with channel attention. The outputs from both branches are then fused to integrate multi-scale spatial and spectral information, which is subsequently transformed to estimate the abundances. The decoder is designed to accommodate both linear and nonlinear mixing scenarios. Its interpretability is enhanced by explicitly modeling the relationships between endmembers, abundances, and nonlinear coefficients in accordance with the polynomial post-nonlinear mixing model (PPNMM). Experiments on synthetic and real datasets validate the effectiveness of the proposed DTU-Net compared to PPNMM-derived methods and several advanced unmixing networks.
Related papers
- A temporal scale transformer framework for precise remaining useful life prediction in fuel cells [10.899223392837936]
Temporal Scale Transformer (TSTransformer) is an enhanced version of the inverted Transformer (iTransformer)
Unlike traditional Transformers that treat each timestep as an input token, TSTransformer maps sequences of varying lengths into tokens at different stages for inter-sequence modeling.
It improves local feature extraction, captures temporal scale characteristics, and reduces token count and computational costs.
arXiv Detail & Related papers (2025-04-08T23:42:54Z) - EDiT: Efficient Diffusion Transformers with Linear Compressed Attention [11.36660486878447]
quadratic scaling properties of the attention in DiTs hinder image generation with higher resolution or on devices with limited resources.
We introduce an efficient diffusion transformer (EDiT) to alleviate these efficiency bottlenecks.
We demonstrate the effectiveness of the EDiT and MM-EDiT architectures by integrating them into PixArt-Sigma(conventional DiT) and Stable Diffusion 3.5-Medium (MM-DiT)
arXiv Detail & Related papers (2025-03-20T21:58:45Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
Model binarization has made significant progress in enabling real-time and energy-efficient computation for convolutional neural networks (CNN)
We propose BHViT, a binarization-friendly hybrid ViT architecture and its full binarization model with the guidance of three important observations.
Our proposed algorithm achieves SOTA performance among binary ViT methods.
arXiv Detail & Related papers (2025-03-04T08:35:01Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions.
We introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies.
arXiv Detail & Related papers (2024-08-31T10:03:19Z) - CT-MVSNet: Efficient Multi-View Stereo with Cross-scale Transformer [8.962657021133925]
Cross-scale transformer (CT) processes feature representations at different stages without additional computation.
We introduce an adaptive matching-aware transformer (AMT) that employs different interactive attention combinations at multiple scales.
We also present a dual-feature guided aggregation (DFGA) that embeds the coarse global semantic information into the finer cost volume construction.
arXiv Detail & Related papers (2023-12-14T01:33:18Z) - Deformable Mixer Transformer with Gating for Multi-Task Learning of
Dense Prediction [126.34551436845133]
CNNs and Transformers have their own advantages and both have been widely used for dense prediction in multi-task learning (MTL)
We present a novel MTL model by combining both merits of deformable CNN and query-based Transformer with shared gating for multi-task learning of dense prediction.
arXiv Detail & Related papers (2023-08-10T17:37:49Z) - Dual Aggregation Transformer for Image Super-Resolution [92.41781921611646]
We propose a novel Transformer model, Dual Aggregation Transformer, for image SR.
Our DAT aggregates features across spatial and channel dimensions, in the inter-block and intra-block dual manner.
Our experiments show that our DAT surpasses current methods.
arXiv Detail & Related papers (2023-08-07T07:39:39Z) - Application of Transformers for Nonlinear Channel Compensation in Optical Systems [0.23499129784547654]
We introduce a new nonlinear optical channel equalizer based on Transformers.
By leveraging parallel computation and attending directly to the memory across a sequence of symbols, we show that Transformers can be used effectively for nonlinear compensation.
arXiv Detail & Related papers (2023-04-25T19:48:54Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
State-of-the-art language models (LMs) represented by long-short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming increasingly complex and expensive for practical applications.
Current quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of LMs to quantization errors.
Novel mixed precision neural network LM quantization methods are proposed in this paper.
arXiv Detail & Related papers (2021-11-29T12:24:02Z) - Rewiring the Transformer with Depth-Wise LSTMs [55.50278212605607]
We present a Transformer with depth-wise LSTMs connecting cascading Transformer layers and sub-layers.
Experiments with the 6-layer Transformer show significant BLEU improvements in both WMT 14 English-German / French tasks and the OPUS-100 many-to-many multilingual NMT task.
arXiv Detail & Related papers (2020-07-13T09:19:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.