論文の概要: Context-Enhanced Vulnerability Detection Based on Large Language Model
- arxiv url: http://arxiv.org/abs/2504.16877v1
- Date: Wed, 23 Apr 2025 16:54:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 15:11:22.169506
- Title: Context-Enhanced Vulnerability Detection Based on Large Language Model
- Title(参考訳): 大規模言語モデルに基づく文脈拡張脆弱性検出
- Authors: Yixin Yang, Bowen Xu, Xiang Gao, Hailong Sun,
- Abstract要約: 本稿では,プログラム解析と大規模言語モデルを組み合わせたコンテキスト強化型脆弱性検出手法を提案する。
具体的には、プログラム分析を用いて、様々なレベルの抽象レベルで文脈情報を抽出し、無関係なノイズを除去する。
私たちのゴールは、脆弱性を正確に捉え、不要な複雑さを最小限に抑えるのに十分な詳細を提供することのバランスを取ることです。
- 参考スコア(独自算出の注目度): 17.922081397554155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vulnerability detection is a critical aspect of software security. Accurate detection is essential to prevent potential security breaches and protect software systems from malicious attacks. Recently, vulnerability detection methods leveraging deep learning and large language models (LLMs) have garnered increasing attention. However, existing approaches often focus on analyzing individual files or functions, which limits their ability to gather sufficient contextual information. Analyzing entire repositories to gather context introduces significant noise and computational overhead. To address these challenges, we propose a context-enhanced vulnerability detection approach that combines program analysis with LLMs. Specifically, we use program analysis to extract contextual information at various levels of abstraction, thereby filtering out irrelevant noise. The abstracted context along with source code are provided to LLM for vulnerability detection. We investigate how different levels of contextual granularity improve LLM-based vulnerability detection performance. Our goal is to strike a balance between providing sufficient detail to accurately capture vulnerabilities and minimizing unnecessary complexity that could hinder model performance. Based on an extensive study using GPT-4, DeepSeek, and CodeLLaMA with various prompting strategies, our key findings includes: (1) incorporating abstracted context significantly enhances vulnerability detection effectiveness; (2) different models benefit from distinct levels of abstraction depending on their code understanding capabilities; and (3) capturing program behavior through program analysis for general LLM-based code analysis tasks can be a direction that requires further attention.
- Abstract(参考訳): 脆弱性検出はソフトウェアセキュリティの重要な側面である。
セキュリティ侵害の可能性を防ぎ、悪意のある攻撃からソフトウェアシステムを保護するためには、正確な検出が不可欠である。
近年,ディープラーニングと大規模言語モデル(LLM)を活用した脆弱性検出手法が注目されている。
しかし、既存のアプローチでは、個々のファイルや関数の分析に重点を置いていることが多いため、十分なコンテキスト情報を収集する能力は制限されている。
リポジトリ全体を分析してコンテキストを収集すると、大きなノイズと計算オーバーヘッドが発生する。
これらの課題に対処するために,プログラム解析とLLMを組み合わせたコンテキスト強化型脆弱性検出手法を提案する。
具体的には、プログラム分析を用いて、様々なレベルの抽象レベルで文脈情報を抽出し、無関係なノイズを除去する。
ソースコードと共に抽象化されたコンテキストは、脆弱性検出のためにLLMに提供される。
本研究では,LLMによる脆弱性検出性能の向上について検討した。
私たちのゴールは、脆弱性を正確に捉えるのに十分な詳細を提供することと、モデルのパフォーマンスを妨げうる不要な複雑さを最小限にすることのバランスを取ることです。
GPT-4、DeepSeek、CodeLLaMAの様々なプロンプト戦略を用いた広範な研究に基づいて、(1)抽象化されたコンテキストを組み込むことで脆弱性検出の有効性が著しく向上すること、(2)コード理解能力に応じて異なる抽象化レベルの恩恵を受けること、(3)一般的なLCMベースのコード解析タスクのプログラム解析によるプログラム動作のキャプチャは、さらなる注意を要する方向である可能性があること、などの知見を得た。
関連論文リスト
- Reasoning with LLMs for Zero-Shot Vulnerability Detection [0.9208007322096533]
textbfVulnSageは,多種多様な大規模オープンソースソフトウェアプロジェクトから収集した,総合的な評価フレームワークである。
このフレームワークは、関数レベル、ファイルレベル、関数間の複数の粒度解析をサポートする。
Baseline、Chain-of-context、Think、Think & verifyの4つの異なるゼロショットプロンプト戦略を採用している。
論文 参考訳(メタデータ) (2025-03-22T23:59:17Z) - LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
大規模言語モデル(LLM)は、ソフトウェア脆弱性検出のためのトランスフォーメーションツールとして登場している。
本稿では,脆弱性検出におけるLSMの詳細な調査を行う。
言語間の脆弱性検出、マルチモーダルデータ統合、リポジトリレベルの分析といった課題に対処する。
論文 参考訳(メタデータ) (2025-02-10T21:33:38Z) - From Objects to Events: Unlocking Complex Visual Understanding in Object Detectors via LLM-guided Symbolic Reasoning [71.41062111470414]
オープンボキャブラリ検出器を用いたプラグアンドプレイフレームワークインタフェースの提案。
提案手法は, 検出された実体間の関係パターンを探索する記号的回帰機構を組み合わせたものである。
トレーニング不要のフレームワークを、さまざまなアプリケーションドメインにまたがる特別なイベント認識システムと比較した。
論文 参考訳(メタデータ) (2025-02-09T10:30:54Z) - Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
大型言語モデル (LLM) は様々なドメインに革命をもたらしたが、インジェクション攻撃に弱いままである。
そこで本研究では,特定の注意点が本来の指示から注入指示へと焦点を移す,注意散逸効果の概念を紹介した。
本研究では,アテンション・トラッカーを提案する。アテンション・トラッカーは,インジェクション・アタックを検出するために,インストラクション上の注意パターンを追跡する訓練不要な検出手法である。
論文 参考訳(メタデータ) (2024-11-01T04:05:59Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とLLMのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - Towards Explainable Vulnerability Detection with Large Language Models [17.96542494363619]
ソフトウェア脆弱性は、ソフトウェアシステムのセキュリティと整合性に重大なリスクをもたらす。
大規模言語モデル(LLMs)の出現は、その高度な生成能力による変換ポテンシャルを導入している。
本稿では,脆弱性検出と説明という2つのタスクにLLMを専門化する自動フレームワークであるLLMVulExpを提案する。
論文 参考訳(メタデータ) (2024-06-14T04:01:25Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
脆弱性検出のためのMSIVD, マルチタスクによる自己指示型微調整を, チェーン・オブ・シント・プロンプトとLDMによる自己指示にインスパイアした。
実験の結果,MSIVDは高い性能を示し,LineVul(LLMベースの脆弱性検出ベースライン)はBigVulデータセットでは0.92点,PreciseBugsデータセットでは0.48点であった。
論文 参考訳(メタデータ) (2024-06-09T19:18:05Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
包括的な脆弱性ベンチマークであるVulBenchを紹介します。
このベンチマークは、幅広いCTF課題と実世界のアプリケーションから高品質なデータを集約する。
いくつかのLSMは、脆弱性検出における従来のディープラーニングアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-21T08:20:39Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
大規模言語モデルは、敵の迅速な攻撃に影響を受けやすい。
この脆弱性は、LLMの堅牢性と信頼性に関する重要な懸念を浮き彫りにしている。
トークンレベルで敵のプロンプトを検出するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T03:17:21Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。