論文の概要: Finite-sample valid prediction of future insurance claims in the regression problem
- arxiv url: http://arxiv.org/abs/2503.03659v1
- Date: Wed, 05 Mar 2025 16:47:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 17:18:41.215637
- Title: Finite-sample valid prediction of future insurance claims in the regression problem
- Title(参考訳): 退行問題における将来の保険請求の確定正当性予測
- Authors: Liang Hong,
- Abstract要約: 本稿では,共形予測を有効化するための一般的な機械学習戦略として,共形予測を活用することで,3つの課題を同時に解決する。
また、事前指定されたカバレッジの確率レベルで有限サンプルの妥当性を保証する。
- 参考スコア(独自算出の注目度): 1.7223564681760168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the current insurance literature, prediction of insurance claims in the regression problem is often performed with a statistical model. This model-based approach may suffer from several drawbacks: (i) model misspecification, (ii) selection effect, and (iii) lack of finite-sample validity. This article addresses these three issues simultaneously by employing conformal prediction-a general machine learning strategy for valid predictions. The proposed method is both model-free and tuning-parameter-free. It also guarantees finite-sample validity at a pre-assigned coverage probability level.
- Abstract(参考訳): 現在の保険文献では、回帰問題における保険請求の予測は統計モデルを用いて行われることが多い。
このモデルに基づくアプローチは、いくつかの欠点に悩まされるかもしれない。
(i)モデルミス種別
(二)選択効果、及び
(三)有限サンプルの妥当性の欠如。
本稿では,これら3つの課題を共形予測と機械学習の一般的な戦略を用いて同時に解決する。
提案手法はモデルフリーとチューニングパラメータフリーの両方である。
また、事前指定されたカバレッジの確率レベルで有限サンプルの妥当性を保証する。
関連論文リスト
- Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
本稿では,ランダムラベルノイズによる交換性からの偏差を効率的に処理できる適応型共形推論手法を提案する。
本手法は,合成および実データに対して,その有効性を示す広範囲な数値実験により検証する。
論文 参考訳(メタデータ) (2025-01-29T23:55:23Z) - Progression: an extrapolation principle for regression [0.0]
本稿では,新しい統計外挿原理を提案する。
これは、予測器とトレーニング予測器のサンプルの境界における応答との単純な関係を仮定する。
我々の半パラメトリック法である進行法は、この外挿原理を活用し、トレーニングデータ範囲を超えた近似誤差の保証を提供する。
論文 参考訳(メタデータ) (2024-10-30T17:29:51Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - Mitigating optimistic bias in entropic risk estimation and optimization with an application to insurance [5.407319151576265]
エントロピーリスク尺度は、不確実な損失に関連する尾のリスクを説明するために広く使用されている。
経験的エントロピーリスク推定器のバイアスを軽減するために, 強く一貫したブートストラップ手法を提案する。
当社の手法は、住宅所有者に対してより高い(そしてより正確な)プレミアムを示唆している。
論文 参考訳(メタデータ) (2024-09-30T04:02:52Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Conformalized Selective Regression [2.3964255330849356]
共形予測を利用した選択回帰手法を提案する。
提案手法は, 選択回帰に適合し, 複数の最先端ベースラインに対して有利であることを示す。
論文 参考訳(メタデータ) (2024-02-26T04:43:50Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Performative Prediction with Bandit Feedback: Learning through Reparameterization [23.039885534575966]
行動予測は、データの分布自体がモデルの展開に応じて変化する社会予測を研究するためのフレームワークである。
本研究では,実行予測目標をデータ分散関数として再パラメータ化する再パラメータ化を開発する。
論文 参考訳(メタデータ) (2023-05-01T21:31:29Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
コンフォーマルなオフ政治予測は、新しい目標ポリシーの下で、結果に対する信頼できる予測間隔を出力することができる。
理論上の有限サンプル保証は、標準的な文脈的バンディットの設定を超える追加の仮定をすることなく提供する。
論文 参考訳(メタデータ) (2022-06-09T10:39:33Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。